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ABSTRACT
In this paper, a second degree generalized Gauss –Seidel iteration (SDGGS) method for solving linear system of equa-
tions whose iterative matrix has real and complex eigenvalues are less than unity in magnitude is presented. Few 
numerical examples are considered to show the efficiency of the new method compared to first degree Gauss-Seidel 
(GS), first degree Generalized Gauss-Seidel (GGS) and Second degree Gauss-Seidel (SDGS) methods. It is observed 
that the spectral radius of the new Second degree Generalized Gauss-Seidel (SDGGS) method is less than the spectral 
radius of the methods GS, GGS and SDGS. By use of second degree iteration (SD) method, it is possible to accelerate 
the convergence of any iterative method.
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INTRODUCTION
Consider a class of linear stationary second degree methods for solving linear system

                  A x =b                                                                                  	 (1)
where A is a given real non singular n x n matrix and b is a given vector or nx1 (column) matrix (Saad ,1995). It-
erative methods, based on splitting A into 
A = D-L-U, compute successive approximations  to obtain more accurate solutions to a linear sys-
tem at each iteration step n. This process can be written in the form of the general iteration matrix equation 
as 

                                ( 1) ( )
1

n nx G x C+ = +          
 In numerical linear algebra the Gauss–Seidel method, also known as the Liebmann method or the method of 
successive displacement, is an iterative method used to solve a linear system of equations (Kahan, 1958). It is 
named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig Von Seidel, and is similar to 
the Jacobi method. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence 
is only guaranteed if the matrix is either diagonally dominant, or symmetric and positive definite. The computed 
Gauss-Seidel iterate successively for each component. It has been proved that, if A is strictly diagonally dominant 
(SDD) or irreducibly diagonally dominant, then the associated Jacobi and Gauss-Seidel iterations converge for 
any initial guess X(0) (Li,2005). If A is symmetric positive definite (SPD) matrix, then the Gauss-Seidel method 
also converges for any initial guess X(0)

 (David, 2007).

The Gauss-Seidel iteration (GS) method for first degree is  
( 1) 1 ( ) 1( ) ( )n nx D L Ux D L b+ − −= − + −                          	                         (2)
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The Generalized Gauss –Seidel (GGS) iterative method for first degree stated by 
(David, 2007) is

       ( 1) 1 ( ) 1( ) ( )n n
m m m m mx D L U x D L b+ − −= − + −                                      	 (3)                          

where, 1( )m m m mG D L U−= −   is the iteration matrix of the GGS method.

           1( )m mC D L b−= −   is a column vector. 
In the next section, a review of Second degree generalized Gauss-Seidel iterative method (SDGGS) is presented. 
Following this, the relationship between spectral radius of first degree Gauss-Seidel (GS), first degree gener-
alized Gauss-Seidel (GGS) and Second degree Gauss-Seidel (SDGS) methods and Second degree generalized 
Gauss-Seidel iteration methods is given. Finally, based on the results on the numerical examples considered, dis-
cussion and conclusion made. 

SECOND DEGREE GENERALIZED GAUSS-SEIDEL ITERATIVE METHOD              
The linear stationary second degree method is given by (David, 1970) is

        ( 1) ( ) ( ) ( 1) ( 1) ( )
1 1( ) ( )n n n n n nx x a x x b x x+ − += + − + −                       	        (4)                                          

Here, X (n+1) appearing in the right hand side as given in (2) is completely consistent for any constant a1 and 
b1such that b1≠0.

( 1) ( ) ( ) ( 1) ( ) ( )
1 1 1

( 1) ( ) ( ) ( 1) ( ) ( )
1 1 1 1 1 1

( 1) ( ) ( 1)
1 1 1 1 1 1

( 1) ( ) ( 1)

( ) ( )

[(1 ) ]

,

n n n n n n

n n n n n n

n n n

n n n

x x a x x b G x C x
x x a x a x b G x b C b x
x a b I b G x a x b C
Therefore x Gx Hx K

+ −

+ −

+ −

+ −

= + − + + −

= + − + + −

= + − + − +

= + +

  (5)
     

Where 1 1 1 1(1 )G a b I b G= + − +                                                                    		   (6)

             1H a I= −                                                                                	 (7)

             1K b C=                                                                                 	 (8)
Theorem1.1:- If matrix A is strictly diagonally dominant, then the associated 

      generalized Gauss-Seidel iteration method converges for any initial 
      approximation, x (0). 

 Proof: Since matrix A  is strictly diagonally dominant, we have the iteration matrix      1( )m m m mG D L U−= − . 
Taking the norm at infinity of both sides we have

 ( ) ( ) ( ) 11 1 . 1.m
m m m m m m m m m m

m m

U
G D L U D L U D L U

D L
−− − ∞

∞ ∞ ∞∞∞ ∞
∞

= − < − = − = <
−   

That is 1<
∞mG . 

Thus, the generalized Gauss-Seidel iterative method converges for any initial approximation (0)x   .
The second degree generalized Gauss - Seidel (GGS) method is defined as   
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	 ( 1) ( ) ( 1)n n nx Gx Hx K+ −= + +                                                	 (9)

  Where 1 1 1 1(1 )G a b I b G= + − +                                                       	 (10)

             1H a I= −                                                                              	 (11)

            1K b C=                                                                               	 (12)

           1( )m m m mG D L U−= −  be the iteration matrix of the GGS methods.

           1( )m mC D L b−= −  is a column vector. 
Using the idea of (Golub and Varga, 1961), (9) can be written in the form.

	   
( ) ( 1)

( 1) ( )

0 0n n

n n

Ix x
H G Kx x

−

+

      
= +      
      

The necessary and sufficient condition for convergence of the method is that spectral radius of Ĝ  must 
be less than unity in magnitude for any (0) (1)x and x .

Using (10) and (11), for 
0ˆ I

G
H G

 
=  
 

, ˆ( ) 1Gσ <  ,if and only if all roots  λ of

 2det( ) 0I G Hλ λ− − =           				    (13)    
are less than unity in modulus.

Substituting G and H of (10) and (11) in (13), we have 

2
1 1 1 1det( [(1 ) ] ) 0mI a b I b G a Iλ λ− + − + + =

After collecting and rearranging, we have
2

1 1 1 1det( [(1 ) ] ) 0mI a b I b G a Iλ λ− + − + + =

2
1 1 1

1
1 1

(1 ) ( )
det [ 0m

a b a
b G I I

b b
λ

λ
λ

 + − +
− + − = 
 

2
1 1 1

1
1 1

(1 ) ( )
det [ 0m

a b a
b G I I

b b
λ

λ
λ

 + − +
− + − = 
 

, Since  1det( ) 0b λ− =        (14)

Thus, the eigenvalues mof Gλ   are related to the eigenvalues mof G byµ  

   
2

1 1 1

1 1

(1 ) ( )a b a
b b

λ
µ

λ
+ − +

+ =                                                        	 (15)

Let     ive θλ =                                                                     		  (16) 

Substituting (16) in (15), we have

      
2

1 1 1

1 1

(1 ) ( )i

i

a b ve a
b b ve

θ

θµ
+ − +

+ =    , then 
2

1 1 1

1 1

(1 ) ( cos sin )
(cos sin )

a b v iv a
b b v i

θ θ
µ

θ θ
+ − + +

+ =
+
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After collecting and simplifying, we get

      
2 2

1 1 1 1

1 1 1

( 1 )
cos sin

b a v a v a
i

b b v b v
µ θ θ

   − − + −
= + +   

   
                          (17)

From (17) real part of µ  is   
2

1 1 1

1 1

( 1 )
Re cos

b a v a
b b v

µ θ
 − − +

= +  
 

  

Now add both sides the term 1 1

1

(1 )a b
b

+ −
 , we get

    
2

1 1 1 1 1 1 1

1 1 1 1

(1 ) ( 1 ) (1 )
Re cos

a b b a a b v a
b b b b v

µ θ
 + − − − + − +

+ = + +  
 

. 

So the result is
2

1 1 1

1 1

(1 )
Re cos

a b v a
b b v

µ θ
 + − +

+ =  
 

. 

From this we get,       

1 1

1
2

1

1

(1 )
Re

cos

a b
b

v a
b v

µ
θ

+ −
+

=
 +
 
 

        

Squaring both sides we have 

2

1 1

2 1
2

1

1

(1 )
Re

cos

a b
b

v a
b v

µ
θ

 + −
+ 

 =   +     

.      	     (18)

From (17) imaginary part of µ is 
2

1

1

Im sin
v a

b v
µ θ

 −
=  
 

 , then we get         

          
2

2
22

1

1

Imsin
v a

b v

µθ =
 −
 
 

                                                           (19)
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Add (18) and (19), we get

2

1 1
2

1
2 22 2

1 1

1 1

(1 )
Re

Im 1

a b
b

v a v a
b v b v

µ
µ

 + −
+ 

  + =
   + −
   
   

               (20)

                                                                                                                                                                                                                                                                                                            
                                                                                                       

                                                  

                    a                               b                                                

                       Real case	                                                           Complex case                                                        

          Figure1. General regions for eigenvalues mof Gµ
           
From (20), we have the following 

                    1 1 1 1

1 1 1

11 1 (( ) , ( ) , ( )
2

a a b a
v a v b

b v b v b
a b− − +

+ = − = =

If   the eigenvalues mof Gµ  are real and lie in the interval 1a µ b≤ ≤ <  , then  the choice of a1 and b1 
must satisfy the following conditions 

Im 0  (since µ is a real number), we have 1

1

1 ( )sin 0
a

v
b v

θ− =  , 

we get     v2=a 							      (21)

and from figure (1) above the distance from β to α is 2cb a ′− = , where 2 2c a b′ = −  

Squaring both sides we get  2 2 21 ( )
4

a bb a− = −  .                                  (22) 
   

 Now substituting 1 1

1 1

1 1( ) ( )
a a

v and v
b v b v

+ −  in (22) for a and b respectively, we have 

2 2 21 1

1 1

1 1 1( ) [ ( )] [ ( )]
4

a a
v v

b v b v
b a− = + − − , then we get  

2
2

1

1 4( )
4

v
b

b a− = , taking square root of 

both sides, 

  a                         b 

               

 a                                b 
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we get       
1

2
2

v
b

b a−
=                                                                              (23)

Thus we have from (15), (16) and (17), we get

       2(1 ) 2
2 ( )

v vb a
b a
−

+ =
− +

                                                                    	(24)

If we let 
2 ( )
b aσ
b a
−

=
− +

   , then we get   

      2 2

2

2 ˆ(1 ) 2 1
1 1

bv v and let vσ ω
σ

+ = + = =
+ −

                    	 (25)
 

From (16), we have

         
2

1 2 2 2

2ˆ 1 1
1 1 [1 1 ]

a σω
σ σ

= − = − =
+ − + −

                                  (26)
  

  and 1 2

ˆ ˆ2 2 4
( ) 2 ( ) [1 1 ][2 ( )]

b bb
σω ω
b a b a σ b a

= = =
− − + + − − +

                 (27)                                                 

Therefore the spectral radius of
1 1
2 2

1 1
ˆ ˆ ˆ( . . ( ) 1)bG is a i e G aσ ω= = −       (28)                                                         

Thus with this choice of a1 and b1, the second degree method for any iteration is given by (David, 2007) 

( 1) ( ) ( 1) ˆ2 2ˆ ˆ( ) (1 )
2 ( ) 2 ( ) 2 ( )

n n nm b
b b

G
x I x x C

ωb aω ω
b a b a b a

+ −+
= − + − +

− + − + − +
       (29)

Where
2

2ˆ
1 1

bω
σ

=
+ −

 ,        

mG  is the generalized iteration matrix and C is column vector.

If A is positive definite matrix and if  is a generalized Gauss-Seidel iterative matrix and hence

2
2

2, 0 ,
2 ( ) 2
b a µb µ a σ
b a µ
−

= = = =
− + −

, whereµ  is spectral radius of generalized Jacobi matrix

2

2ˆ
1 1

bω
σ

=
+ −

=  
2 2

2 2 2 2 22

2

2 4 2 2(2 )

2 1 (1 1 )
1 1

2

µ µ

µ µ µµ
µ

− −
= =

− + − + − 
+ −  − 

      (30)
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4

1 2 2 42

2

2ˆ 1 1
(1 1 )

1 1
2

ba µω
µµ

µ

= − = − =
+ − 

+ −  − 

                                            (31)

and  
2

1 2 2 2 2 2

ˆ ˆ2 2 2 2(2 ) 4( )
( ) 2 ( ) 2 (1 1 ) (1 1 )

b bb
σω ω µ
b a b a µ µ µ

−
= = = =

− − + − + − + −
      (32)    

1 2
2

1 2 2
ˆ ˆ( ) 1

(1 1 )
bG a µσ ω

µ
= = − =

+ −
                     	             	           (33)    

       

Therefore, the second degree generalized Gauss-Seidel method is given by  

               (1) (0)
1x G x C= +                                                                       	         (34)

            ( 1) ( ) ( ) ( ) ( 1)
2 2

ˆ ˆ2 2 ˆ( ) (1 ) ( 1)( )
2 2

n n n n nb b
m m bx G x C x x x

ω ω
ω

µ µ
+ −= + + − + − −

− −

 Where
2

1 1

2 2

4 2ˆ , ( ) ( )
2 1

b m m m m m m m mG D L U and C D L bµω
µ µ

− −−
= = − = −

− + −
 

Relationship between Spectral Radiuses 
Based on the results on the spectral radius, the following relations are observed

	First degree Jacobi method (FDJ) is µ  .

	Second degree Jacobi method (SDJ) is 1 21 1
a µ

µ
=

+ −
.

	Second degree generalized Jacobi method (SDGJ) is 1 21 1
m

m

a
µ

µ
=

+ −

	Second degree Gauss-Seidel  method (SDGS) is 
2

1 2 2(1 1 )
a µ

µ
=

+ −

	Second degree generalized Gauss-Seidel  method (SDGGS) is 
2

1 2 2(1 1 )
m

m

a
µ

µ
=

+ −

We  know 
2

2 2 2 2(1 1 ) 1 1 1 1
m m

m m

µ µ µ µ
µ µ µ

≤ ≤ ≤
+ − + − + −

  Since  21 1 0µ+ − >  and 

also 2 , 0,1, 2,3....m m m nµ µ µ≤ ≤ ∀ = , 
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If m=0, we have 0µ µ= .

Numerical Examples

Example 1: Solve the following strictly diagonal dominant (SDD) linear system of equations:

                  








−=−+
=++−

=+−

152
5272

1126

321

321

321

xxx
xxx

xxx

   

 

 Using   a) GS                      b) GGS                c) SDGGS

Solution:- Let us choose  x(0)=(0,0,0)t  is an initial approximation value and tolerance number is 10-5. Now 
the spectral radius of Gauss-Seidel and generalized Gauss-Seidel iteration methods are   r(GS)=0.1396 and 
r(GGS)=0.050459. i.e r(GGS) < r(GS).

 Example 2: Solve the following positive definite (PD) linear system of equation using GS, 

                     GGS, SDGGS methods.

                              











=+−−
−=−+−
−=−+−

=−−

94
74
34

54

432

431

421

321

xxx
xxx
xxx
xxx

 

Solution: Let us take the initial approximation x(0) =(0,0,0,0)t with an  accuracy  of 10-5.

The spectral radius of Gauss-Seidel (GS) and generalized Gauss-Seidel iteration methods (GGS) are r 
(GS)=0.3334, r(GGS)=0.1112 . i.e r(GGS) < r(GS).

RESULTS AND DISCUSSION

As presented in Table 1, the exact solution for the given linear system of equation is (2,1,1). It is observed from 
the table that the same solution is obtained at the 8th iteration by Gauss-Seidel method (GS), at the 6th iteration by 
Generalized Gauss-Seidel method(GGS) and by Second degree Generalized Gauss-Seidel (SDGGS) method by 
considering only m=1. If m=2 one can see that at the first iteration exact solution is obtained. 
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As presented in Table 2, the exact solution for the given linear system of equation is (1,0,-1,2). It is observed 
from the table that the same solution is obtained, using Gauss-Seidel method (GS) at the 12th iteration, using 
Generalized Gauss-Seidel method(GGS) at the 9th iteration and using Second degree Generalized Gauss-
Seidel (SDGGS) method at the 6th iteration by considering only m=1. If m=2,3,4 one can get almost equal to 
the exact solution with small number of iteration. Hence for Positive definite (PD) matrix SDGGS method is 
faster than first degree GS, GGS and Second degree GS method.

Table 1: Solution of GS, GGS and SDGGS for SDD Matrix

n
GS GGS(m=1) SDGGS(m=1)

x1 x2 x3 x1 x2 x3 x1 x2 x3

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 1.83333 1.23806 1.06191 2.17890 1.03670 1.05046 2.17890 1.03670 1.05046

2 2.06905 1.00204 1.01463 1.99097 0.99815 0.99745 1.98805 0.99759 0.99666

3 1.99824 0.99531 0.99988 2.00044 1.00009 1.00013 2.00082 1.00016 1.00022

4 1.99881 1.00030 0.99988 1.99998 1.00000 0.99999 1.99995 0.99999 0.99999

5 2.00012 1.00007 1.00005 2.00000 1.00000 1.00000 2.00000 1.00000 1.00000

6 2.00001 1.00000 1.00000 2.00000 1.00000 1.00000 2.00000 1.00000 1.00000
7 2.00000 1.00000 1.00000

8 2.00000 1.00000 1.00000

         

Table 2: Solution GS, GGS and SDGGS Iterative Methods

  GS GGS (m=1) SDGGS (m=1)

n x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3  x4

   0
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1
1.25000 0.43750 -1.4375 1.78125 1.13333 0.46667 -0.99556 1.88444 1.13333 0.46667 -0.9955 1.88444

2
0.78125 0.10938 -1.9453 1.94531 0.99348 0.03052 -1.00377 1.99143 0.98610 0.00485 -1.0051 1.99946

3
. . . . . . . . 0.99921 0.00018 -1.0001 1.99990

4
. . . . . . . . 1.00001 0.00005 -1.0000 1.99999

5
. . . . . . . . 1.00000 0.00001 -1.0000 2.00000

6
. . . . . . . . 1.00000 0.00000 -1.0000 2.00000

7
. . . . . . . .

8
. . . . 1.00000 0.000000. -1.00000 1.999999.

10 . . . .
11 1.00000 0.00000 -1.0000 2.00000
12 1.00000 0.00000 -1.0000 2.00000
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CONCLUSION
If   matrix A is strictly diagonal dominate (SDD) and positive definite (PD) matrix, then by the use of second 
degree generalized Gauss-Seidel iterative method(SDGGS), it is possible to accelerate the convergence rate 
of the solution of linear system of equations which has real and complex eigenvalues that are less than unity 
in magnitude . The numerical results shows that the SDGGS method is more effective than first degree Gauss-
Seidel (GS), first degree generalized Gauss-Seidel (GGS) and second degree Gauss-Seidel (GS) methods. 
Moreover, from the relationship of spectral radius, the spectral radius of SDGGS is less than SDGS. In general, 
the results of numerical examples and spectral radius comparison considered clearly demonstrate the accuracy 
of the methods developed in this article. It is conjectured that the rate of convergence of some methods 
developed in this paper can be further enhanced by using extrapolating techniques.    
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