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ABSTRACT 

 

Although large and sparse linear systems can be solved using iterative methods, its 

number of iterations is relatively large. In this case, we need to modify the existing 

methods in order to get approximate solutions in a small number of iterations. In this 

paper, the modified method called second-refinement of Gauss-Seidel method for 

solving linear system of equations is proposed. The main aim of this study was to 

minimize the number of iterations, spectral radius and to increase rate of convergence. 

The method can also be used to solve differential equations where the problem is 

transformed to system of linear equations with coefficient matrices that are strictly 

diagonally dominant matrices, symmetric positive definite matrices or M-matrices by 

using finite difference method. As we have seen in theorem 1and we assured that, if A is 

strictly diagonally dominant matrix, then the modified method converges to the exact 

solution. Similarly, in theorem 2 and 3 we proved that, if the coefficient matrices are 

symmetric positive definite or M-matrices, then the modified method converges. And 

moreover in theorem 4 we observed that, the convergence of second-refinement of 

Gauss-Seidel method is faster than Gauss-Seidel and refinement of Gauss-Seidel 

methods. As indicated in the examples, we demonstrated the efficiency of second-

refinement of Gauss-Seidel method better than Gauss-Seidel and refinement of Gauss-

Seidel methods.    
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INTRODUCTION 

 

Systems of linear equations arise in large number of areas both directly in 

modeling physical situations and indirectly in numerical solutions of other 

mathematical models. These applications occur in all areas of the physical, 

biological, social science, engineering, etc. (Laskar and Behera, 2014b). The 
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solution of a system of equations can be obtained either by using direct method 

or iterative method. One of the earliest iterative methods is Gauss-Seidel 

iterative method named after the German mathematicians Carl Friedrich Gauss 

(1777 – 1855) and Philipp Ludwig von Seidel (1821 – 1896). The Gauss–

Seidel method is also known as iteration by successive displacements or 

single steps by Geiringer and the Liebman method by Frankel. The 

convergence of the method is guaranteed for some special matrices such as 

strictly diagonally dominant (SDD), symmetric positive definite (SPD) or M-

matrices. In recent years, research results show that relaxation, generalized and 

refinement are used for modifying Gauss-Seidel method. The generalized 

Gauss-Seidel (GGS) method was developed by Salkuyeh (2007) and the 

researcher proved the convergence of the method by considering strictly 

diagonally dominant (SDD) matrices and M-matrices. The refinement of 

Gauss-Seidel (RGS) method was developed by Vatti and Tesfaye Kebede 

(2011) and who proved the convergence of the method by considering SDD 

matrices. The GGS method was also modified as refinement of GGS (RGGS) 

method (Laskar and Behera, 2014a) and considered SDD matrices to show the 

convergence of the method. All the above researchers tried to minimize the 

number of iterations and improved rate of convergence. But still different 

researchers have been conducting research in the area of iterative methods.  

 

 

METHODOLOGY  

 

Consider large and sparse linear systems of the form 

bAx =        (1) 

 where ( )ijaA =  is nonsingular real matrix of order n , b  is a given n  

dimensional real vector and x  is an n  dimensional vector to be determined. 

This equation can be computed by iterative methods based on splitting A as:  

ULDA −−=       (2) 

where D  is a diagonal matrix with 0iia , L−  and U−  are strictly lower 

and upper triangular parts of A , respectively (Varga, 1962; Saad, 2003).  

The coefficients matrices which we used in the examples were SDD, SPD, M-

matrices or a combination of these types. The convergence of the modified 

method was checked by using the number of iterations, spectral radius and rate 

of convergence.  

The Gauss-Seidel iteration (GS) for first degree is 

( ) ( ) bLDUxLDx nn 1)(1)1( −−+ −+−=    (3) 

If the matrix A is SDD, SPD and M-matrices, then equation (3) is convergent. 
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Refinement of Gauss-Seidel (RGS) Method 

Equation (1) could be solved by different methods. One of such methods is 

refinement of Gauss-Seidel (RGS) method. This method was introduced by 

Vatti and Tesfaye Kebede (2011). Now, use ULDA −−=  in equation (1), 

simplify and get the equation: 

( ) ( ))1(1)1()1( +−++ −−+= nnn xAbLDxx . Let us 

substitute ( ) ( ) bLDUxLDx nn 1)(1)1( −−+ −+−= . Then we get 

( ) ( ) ( )
( ) )]

)(([
1

)(111)(1)1(

bLD

UxLDAbLDbLDUxLDx nnn

−

−−−−+

−

+−−−+−+−=

( ) ( ) ( ) ( )
( ) .)])(

([
1)(1

11)(1)1(

bLDUxLD

ULDbLDbLDUxLDx
n

nn

−−

−−−+

−+−

−−−−+−+−=
 

After simplification, we obtain: 

( )  ( ) ( ) bLDULDIxULDx nn 11)(
21)1( −−−+ −−++−= .                  (4) 

Equation (4) is called refinement of Gauss-Seidel (RGS) method. 

If A is SDD, SPD and M-matrices, then the refinement of Gauss-Seidel method 

converges to exact solution. 

Second-Refinement of Gauss-Seidel (SRGS) Method 

Equation (1) can be rewritten as: 

( ) ( ) bUxxLDbxULD +=−=−−  

( ) ( ) bxALDxLD +−−=− , where ALDU −−=  

( ) ( ) ( ) ( )AxbLDxxAxbxLDxLD −−+=−+−=−
−1

 

( ) ( ))1(1)1()1( +−++ −−+= nnn xAbLDxx . 

By taking ( ) ( ))1(1)1()1( +−++ −−+= nnn xAbLDxx  substitute equation (4) on 

)1( +nx  in the right side of this equation, we get:     

( )  ( ) ( ) ( )

( )  ( ) ( ) ( ) .
11)(

21

111)(
21)1(

bLDULDIxULDAb

LDbLDULDIxULDx

n

nn

−−−

−−−−+

−−++−−

−+−−++−=
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After simplifying the above equation, we get: 

( )  ( ) ( )( ) ( ) bLDULDULDIxULDx nn 1211)(
31)1( −−−−+ −−+−++−=

(5) 

 

Equation (5) is called second-refinement of Gauss-Seidel (SRGS) method. 

 

Convergence of Second-Refinement of Gauss-Seidel (SRGS) Method  

 

Theorem 1: If A is strictly diagonally dominant (SDD) matrix, then the 

second-refinement of Gauss-Seidel (SRGS) method is convergent for any 

initial guess
)0(x . 

 

Proof: 

A similar proof as this theorem can be obtained in (Dafchahi, 2008; Vatti and 

Genanew Gofe, 2011; Vatti and Tesfaye Kebede, 2011; Laskar and Behera, 

2014a).  

 

Let X be the real exact solution of (1). Given that A is SDD matrix. Then GS 

and RGS methods are convergent and so let 
)1( +nx converges to X  when 

( )  ( ) ( ) bLDULDIxULDx nn 11)(
21)1( −−−+ −−++−= . Then, 

( ) ( ))1(1)1()1( +−++ −−+= nnn xAbLDxx  or  

( ) ( ).)1(1)1()1( +−++ −−+−=− nnn xAbLDXxXx  

 

Hence, by taking norm to both sides 

( ) ( )
( ) ( ))1(1

)1()1(1)1()1(

+−

++−++

−−

+−−−+−=−

n

nnnn

xAbLD

XxxAbLDXxXx

( ) ( )
AXbLD

XXxAbLDXxXx nnn

−−

+−→−−+−−
−

+−++

1

)1(1)1()1(

)(

  = 0 + bbLD −− −1)(  = 0 + 0 = 0. 

Hence, 
)1( +nx converges to X . 

( )( )( ) ( )( ) .1
3131
−=−

−−
ULDULD 

 
Therefore, the SRGS method is convergent. 
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Theorem 2: If A is symmetric positive definite matrix (SPD), then the second-

refinement of Gauss-Seidel (SRGS) method converges for any arbitrary choice 

of the initial approximation
)0(x . 

 

Proof: 

According to Quarteroni et al. (2000), we can prove this theorem by using 

consistency and spectral radius of the iterative matrix or definition of 

convergence of the method. Given equation (3), then we have 

1))(( 1 − − ULD since A is SPD matrix. Let X be the exact solution of 

(1). Then the Gauss-Seidel iterative method can be rewritten as: 

.)(])([ 111 bLDULDIX −−− −−−=  Using equation (5) we have: 

( )  ( ) ( )( ) ( ) bLDULDULDIxULDx nn 1211)(
31)1( −−−−+ −−+−++−=  

 

First, we have to check consistency of SRGS method with GS method. 

From GS method, we have 1))((1)( 11 −− −− ULDULD  . 

After substituting X  in equation (5), one can get,  

bLDULDULDIXULDX 121131 )]())(()([))(( −−−− −−+−++−=  

bLDULDULDIULDIX 1211131 )]())(()([)))((( −−−−− −−+−+−−=

bLDULD
ULDILDULDI

121

16131

)]())((
)(....][))(())(([

−−

−−−

−−
+−++−+−+=

 

 

Since (I - M)-1 = I + M + M2 +…     if (M) < 1 and I – M is nonsingular. 

bLD
ULDULDULDULDI

1

4131211

)...](
))(())(())(()([

−

−−−−

−+
−+−+−+−+=

= bLDULDI 111 )(])([ −−− −−− . Since (I - M)-1 = I + M + M2 + … 

bLDULDIX 111 )(])([ −−− −−−= is consistent to Gauss-Seidel 

method. 

 

Next, let us check convergence of the modified method or SRGS method when 

A is SPD matrix. 
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( )  ( ) ( )( ) ( ) bLDULDULDIxULDx nn 1211)(
31)1( −−−−+ −−+−++−=

( ) 
( ) bLDULDULD

ULDULDULDIxULD n

15141

31211)1(
61

]))(())((

))(())(()([
−−−

−−−−−

−−+−

+−+−+−++−=

( ) 
bLDULD

ULDULDIxULD n

181

211)2(
91

)]())((
...))(()([

−−

−−−−

−−
++−+−++−=  

and so on.  For n = 0, 1, 2,… 

( ) 
bLDULDULD

ULDULDIxULD
n

n

12311

211)0(
331

)]())((...))((

))(()([
3 −+−−

−−
+−

−−++−

+−+−++−=
 

Hence, 1))(( 1 − − ULD  since A is SPD.         

( )  0lim )0(
331

=−
+−

→
xULD

n

n

 

( )  bLDULDULDx k
n

k
n

n

n

n

n

11
23

0

331)1( )())((limlimlim −−
+

=
→

+−

→

+

→
−−+−= 

 

= 0 + bLDULDI 111 )())(( −−− −−−  

= .)())(( 111 XbLDULDI =−−− −−− .)1( Xx n → +

( )( )  ( )( )  1
3131
−=−

−−
ULDULD  .  

 

Or we can show by using spectral radius of the iteration matrix since A is SPD 

matrix. Therefore, the second-refinement of Gauss-Seidel method is 

convergent. 

 

Theorem 3: If A  is an M-matrix, then the second-refinement of Gauss-Seidel 

(SRGS) iterative method converges for any initial guess 
)0(x . 

 

Proof: 

From theorem 2, we proved that our modified method (SRGS method) is 

consistent with GS method. So, we can show the convergence of the method by 

using spectral radius of iterative matrix.If the matrix A is an M-matrix, then the 

spectral radius of GS is less than 1. Thus, ( )( ) 1)(
1

−
−

ULD .  

  ( )( ) ( )( )  1)(
3131
−=−

−−
ULDULD  . The spectral radius of 

SRGS method is less than 1. 

SRGS method is convergent. 
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Theorem 4: The second-refinement of Gauss-Seidel method converges faster 

than the Gauss-Seidel method and refinement of Gauss-Seidel method when 

Gauss-Seidel method is convergent. 

 

Proof: 

We can rewrite equation (3), (4) and (5), respectively, by CGxx nn +=+ )()1(
, 

BxGx nn +=+ )(2)1(
and KxGx nn +=+ )(3)1(

where ( ) ULDG
1−

−= , 

( ) bLDC
1−

−= , ( ) ( ) bLDULDIB
11 −−

−−+= and  

( ) ( )( ) ( ) bLDULDULDIK
1211 −−−

−−+−+= . Given that .1G  

Let X be the exact solution of (1).  

CGXX += , BXGX += 2
and KXGX += 3

. And let 

...,2,1,0=n be nonnegative integer. 

 

If we consider Gauss-Seidel method: 

CGxx nn +=+ )()1( CXGxXx nn +−=− + )()1(

XCGXXxGXx nn −++−=− + )( )()1(

)( )()1( XxGXx nn −=− +

XxG

XxGXxGXxGXx
n

nnnn

−

−−−=− −+

)1(

)1(2)()()1( ...)(
 

XxGXxGXx
nnn −−− + )1()1()1(

.  

 

Now, let us consider refinement of Gauss-Seidel method. 

BxGx nn +=+ )(2)1( BXxGXx nn +−=− + )(2)1(

XBXGXxGXx nn −++−=− + 2)(2)1( )(

XxG

XxGXxGXxGXx
n

nnnn

−

−−−=− −+

)1(2

)1(4)(2)(2)1( ...)(

XxGXxGXx
nnn −−− + )1(2)1(2)1(

. 
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Again let us consider second-refinement of Gauss-Seidel method. 

KxGx nn +=+ )(3)1( KXxGXx nn +−=− + )(3)1(

XKXGXxGXx nn −++−=− + 3)(3)1( )(  

XxG

XxGXxGXxGXx
n

nnnn

−

−−−=− −+

)1(3

)1(6)(3)(3)1( ...)(

.)1(3)1(3)1( XxGXxGXx
nnn −−− +

 

According to the coefficients of above inequalities, we have 
nnn

GGG 
23

since .1G  

Therefore, the second-refinement of Gauss-Seidel method converges faster than 

the Gauss-Seidel method and refinement of Gauss-Seidel method. 

 

Mth-Refinement of Gauss-Seidel Method 

 

We can generalize the refinement of Gauss-Seidel method by mth-refinement of 

Gauss-Seidel iterative method. This general form of RGS method can be 

derived by considering the following patterns.  

➢ Refinement of Gauss-Seidel method is 

( )  ( ) ( ) bLDULDIxULDx nn 11)(
21)1( −−−+ −−++−= ,  

➢ Second-refinement of Gauss-Seidel method is 

( )  ( ) ( )( ) ( ) bLDULDULDIxULDx nn 1211)(
31)1( −−−−+ −−+−++−=  

➢ Third-refinement of Gauss-Seidel method is 

( ) 
( ) bLDULD

ULDULDIxULDx nn

131

211)(
41)1(

]))((

))(()([
−−

−−−+

−−

+−+−++−=
 

➢ Fourth-refinement of Gauss-Seidel method is 

( ) 
( ) bLDULDULD

ULDULDIxULDx nn

14131

211)(
51)1(

]))(())((

))(()([
−−−

−−−+

−−+−

+−+−++−=

and so on  

➢ The mth-refinement of Gauss-Seidel method is     

( ) 
( ) bLDULD

ULDULDIxULDx
m

n
m

n

11

211)(
11)1(

]))((

...))(()([
−−

−−
+−+

−−

++−+−++−=

where m = 0, 1, 2, 3, …  
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( )  ( )( ) ( ) bLDULDxULDx

km

k

n
m

n 1

0

1)(
11)1( −

=

−+−+ −











−+−=   

( )  ( )( ) ( ) bLDULDIxULDx n
m

n 111)(
11)1( −−−+−+ −−−+−= . Since  

( )( ) 1
1

−
−

ULD      

( )  ( )( ) ( ) bLDULDIxULDx n
m

n 111)(
11)1( −−−+−+ −−−+−=      

where ( )( ) 1
1

−
−

ULD   and →m
 

( )  ( )( ) ( ) bLDULDxULDx

km

k

n
m

n 1

0

1)(
11)1( −

=

−+−+ −











−+−=  .   (6)   

Equation (6) is called mth-refinement of Gauss-Seidel method. 

If m = 0 the scheme is equivalent to Gauss-Seidel method.  

If m = 1 the method is equivalent to refinement of Gauss-Seidel method.  

If m = 2 the scheme is equivalent to second-refinement of Gauss-Seidel 

method, and so on. 

 

Numerical Examples 

 

Example 1: Consider the following system of linear equations whose 

coefficient matrix is both SDD and SPD with tolerance 0.0001. 









=++

=++

=++

71022

6282

5226

321

321

321

xxx

xxx

xxx

 

 

Solution: From table 1, one can see that the spectral radius of SRGS method is 

0.0021 which is smaller than spectral radius of GS and RGS methods 0.1291 

and 0.0167 respectively. As presented in Table 2, the exact solution for the 

given linear system of equations is (0.5, 0.5, 0.5). It is observed from the table 

that the same solution is obtained by using Gauss-Seidel method (GS) at the 6th 

iteration, refinement of Gauss-Seidel method (RGS) at the 3rd iteration and 

second refinement of Gauss-Seidel (SRGS) method at the 2nd iteration. Rate of 

convergence for GS, RGS and SRGS are 2.0472, 4.0923 and 6.1658, 

respectively. 

 

Example 2: Consider the following system of linear equations whose 

coefficient matrix is SDD but not SPD with tolerance 0.0001. 
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







=++−

=++

=−+

7834

12273

946

321

321

321

xxx

xxx

xxx

 

 

Table 1. Comparsion of the spectral radius, CPU time and iteration number.  
 

Method                        GS                    RGS                  SRGS 

Spectral radius             0.1291             0.0167                0.0021 

CPU time (second)     36.126            33.107                32.931                            

Iteration number           6                       3                          2 

 
Table 2. Numerical results of example 1 and comparison between GS, RGS and SRGS. 
 

                        GS                                    RGS                               SRGS       

n       x1
(n)           x2

(n)         x3
(n)        x1

(n)        x2
(n             x3

(n)      x1
(n)       x2

(n)       x3
(n) 

0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000  0.0000   0.0000   0.0000 

1   0.8333   0.5417   0.4250   0.5111   0.5160   0.4946  0.4965   0.5022   0.5003 
2   0.5111   0.5160   0.4946   0.4992   0.5001   0.5001  0.5000   0.5000   0.5000 

3   0.4965   0.5022   0.5003   0.5000   0.5000   0.5000 

4   0.4992   0.5001   0.5001 
5   0.4999   0.5000   0.5000 
6   0.5000   0.5000   0.5000 

 

Solution:Table 3 shows that the spectral radius of SRGS method is 0.2741 

which is less than the other two methods GS and RGS whose spectral radius are 

0.6496 and 0.4220 respetively.Which means that the modified method SRGS is 

faster than GS and RGS method. The exact solution for the above equation is 

(1, 1, 1). Table 4 shows that this solution is obtained after 16th iteration by 

using GS method, 9th iteration by using RGS method and 7th iterations by using 

SRGS method.Rate of convergence for GS, RGS and SRGS are 0.4314, 0.8627 

and 1.2943, respectively. 
 

Table 3. Comparison of the spectral radius, CPU time and iteration number. 
 
 

Method                          GS                RGS            SRGS 

Spectral radius              0.6496          0.4220          0.2741 
CPU time (second)     46.433           39.921          38.463                              

Iteration number         16                    9                   7 

 

Example 3: Consider the following system of linear equations whose 

coefficient matrix is SPD but not SDD with tolerance 0.0001. 









=++

=++

=++

7223

11254

13346

321

321

321

xxx

xxx

xxx
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Solution:Table 5 shows that the spectral radius of SRGS method is 0.4219 

which is less than the other two methods GS and RGS whose spectral radius are 

0.7500 and 0.5625, respectively. Which means that the modified method SRGS 

is faster than GS and RGS method. The exact solution for the above equation is 

(1, 1, 1). Table 6 shows that this solution is obtained at 38th iteration by using 

GS method, 20th iteration by using RGS method and 17th iterations by using 

SRGS method.Rate of convergence for GS, RGS and SRGS are 0.2877, 0.5754 

and 0.8630, respectively. 

 
Table 4. Numerical results of example 2 and comparison between GS, RGS and 

SRGS. 
 

 

                         GS                                     RGS                                   SRGS       

n       x1
(n)          x2

(n)      x3
(n)         x1

(n)          x2
(n)        x3

(n)        x1
(n)         x2

(n)        x3
(n) 

0     0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000  0.0000 

1    1.5000   1.0714   1.2232   0.9896   0.9407   1.0170   1.0424   0.9770  1.0298 

2    0.9896   0.9407   1.0170   1.0203   0.9828   1.0166   1.0091   0.9929   1.0072 
3    1.0424   0.9770   1.0298   1.0091   0.9929   1.0072   1.0025   0.9981   1.0020 

..       ...         ...         ...          ...          ...            ...          ...        ...     ... 

7    1.0059   0.9954   1.0047   1.0003   0.9998   1.0002   1.0000   1.0000   1.0000 
8    1.0039   0.9970   1.0030   1.0001   0.9999   1.0001 

9    1.0025   0.9981   1.0020   1.0001   1.0000   1.0000 

10  1.0016   0.9987   1.0013 
..        ...            ...          ... 

16   1.0001   0.9999   1.0001 

 
Table 5. Comparison of the spectral radius, CPU time and iteration number. 
 

Method                           GS               RGS            SRGS 

Spectral radius               0.7500         0.5625           0.4219 

CPU time (second)        49.281         40.819          35.553                              
Iteration number                38              20                 13 

 

Example 4: Consider the following system of linear equations whose 

coefficient matrix is SDD but not PD and SPD with tolerance 0.0001. 









=++

−=+−

=++

742

164

935

321

321

321

xxx

xxx

xxx

 
Solution:Table 7 shows that the spectral radius of SRGS method is 0.0772 

which is less than the other two methods GS and RGS methods whose spectral 

radius are 0.4258 and 0.1813, respectively. The exact solution of the system is 

(1, 1, 1). From table 8 one can see that the solution is obtained after 12 

iterations by using GS method, 6 iterations by using RGS method and 4 

iterations by using SRGS method.Rate of convergence for GS, RGS and SRGS 

are 0.8538, 1.7076 and 2.5614, respectively. 
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Table 6. Numerical results of example 3 and comparison between GS, RGS and SRGS. 
 

                        GS                                    RGS                               SRGS       

n       x1
(n)         x2

(n)       x3
(n)         x1

(n)       x2
(n)        x3

(n)       x1
(n)       x2

(n)        x3
(n) 

0     0.0000  0.0000   0.0000  0.0000  0.0000   0.0000  0.0000  0.0000      0.0000 

1    2.1667  0.4667  -0.2167  1.9639   0.7156  -0.1614  1.7703  0.8483   -0.0038 

2    1.9639  0.7156  -0.1614   1.6030   0.9191   0.1764  1.3565   0.9770    0.4883 
3    1.7703  0.8483  -0.0038   1.3565   0.9770  0.4883  1.1552   0.9965     0.7707 

..      ...           ...           ...         ...              ...            ...       ...        ...      ... 
13  1.0497   0.9997   0.9257   1.0012  1.0000   0.9982   1.0000  1.0000    1.0000 

..       ...          ...           ...          ...            ...           ... 

20   1.0067  1.0000    0.9900   1.0000   1.0000    1.0000 
..       ...           ...           ... 
38    1.0000   1.0000  1.0000 

 

Table 7. Comparison of the Spectral Radius, CPU time and iteration number. 
 
 

Method                        GS             RGS             SRGS 

 Spectral radius            0.4258        0.1813          0.0772   
CPU time (second)    49.533        42.356           41.488                              

Iteration number         12                 6                   4 

 

Example 5: Consider the following system of linear equations whose 

coefficient matrix is an M-matrix A (or 2-cyclic matrix A ), which arises from 

the discretization of the Poisson’s equation f
y

T

x

T
=




+




2

2

2

2

on the unit square as 

considered by (Dafchahi, 2008; Datta , 2010; Vatti and GenanewGofe, 2011), 

with tolerance 0.00001. 



























=





















































−−

−−−

−−

−−

−−−

−−

0

0

0

0

0

1

410100

141010

014001

100410

010141

001014

6

5

4

3

2

1

x

x

x

x

x

x

 
Solution:Table 9 shows that the spectral radius of SRGS method is 0.0483 

which is less than GS and RGS methods whose spectral radius are 0.3643 and 

0.1327, respectively. The exact solution of the system is (0.2948, 0.0932, 

0.0282, 0.0861, 0.0497, 0.0195). From table 10 one can see that the solution of 

the system can be obtained at 9th iteration by using GS method, 5th iteration by 

using RGS method and 3rd iteration by using SRGS method.Rate of 

convergence for GS, RGS and SRGS are 1.0098, 2.0197 and 3.0303, 

respectively. 
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Table 8. Numerical results of example 4 and comparison between GS, RGS and SRGS. 
 
 

                        GS                                     RGS                                SRGS       

n        x1
(n)        x2

(n)        x3
(n)         x1

(n)        x2
(n)         x3

(n)      x1
(n)        x2

(n)         x3
(n) 

0    0.0000   0.0000   0.0000   0.0000   0.0000  0.0000  0.0000  0.0000   0.0000 
1    1.8000  1.3667    0.5083   0.8783   0.8369   1.1016  1.0775  1.0686   0.9441 

2    0.8783  0.8369    1.1016   0.9700   0.9707   1.0223  0.9945   0.9947   1.0041 

3    1.0775  1.0686    0.9441   0.9945   0.9947   1.0041  1.0004   1.0004   1.0000 
4    0.9700   0.9707   1.0223   0.9990   0.9990   1.0007  1.0000  1.0000   1.0000 

5    1.0131   1.0125   0.9903   0.9998   0.9990   1.0001 

6    0.9945   0.9947   1.0041   1.0000   1.0000   1.0000 
..       ...         ...            ...                                              
12   1.0000   1.0000  1.0000  

 

 
RESULTS AND DISCUSSION 

As presented in Table 1, the spectral radius of SRGS method is smaller than 

spectral radius of GS and RGS methods, which means that the rate of convergence 

of SRGS method is larger than rate of convergence of GS and RGS methods. From 

Table 2, one can also see that the number of iterations of SRGS method is one-third 

of the number of iterations of GS method and two-third of number of iterations of 

RGS method. Similarly, Tables 3, 5, 7, and 9 show us the spectral radius of SRGS 

method is smaller than the spectral radius of GS and RGS methods. Thus, the rate 

of convergence of SRGS has larger value than rate of convergence of GS and RGS 

methods. Tables 4, 6, 8 and 10 show us the number of iterations of SRGS method is 

almost one-third of the number of iterations of GS method and two-third of the 

number of iterations of RGS method. Theorem 4 shows that SRGS method is better 

than GS and RGS methods. 

 

 

CONCLUSION 

 

Obtaining the solution of a linear system of equations using numerical methods is 

one of the most important subjects in Applied Science, Engineering and other 

Sciences. In this paper, we modified refinement of Gauss-Seidel as we call it 

second-refinement of Gauss-Seidel iterative method for solving linear system of 

equations which minimizes the number of iterations of GS and RGS methods. Its 

number of iterations is almost two-third of the number of iterations of RGS method 

and one-third of number of iterations of GS method need. It has also fast rate of 

convergence than RGS and GS methods. The result was obtained by MATLAB 

codes by R2013a (8.1.0.604) 32-bits. A number of theorems have been considered 

to show the convergence of SRGS method. It is observed that the modified method 

we presented gives a result faster than both GS & RGS. For verification, we also 

compared our results by taking a similar example considered by researchers as 

shown in example 5. 
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Table 10. Numerical results of example 5 and comparison between GS, RGS and SRGS. 
 

                                                 GS                                                                                                    RGS       

n              x1
(n)                      x2

(n)                 x3
(n)                 x4

(n)            x5
(n)                      x6

(n)        x1
(n)           x2

(n)                x3
(n)                          x4

(n)                  x5
(n)                       x6

(n) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.2500 0.0625 0.0156 0.0625 0.0313 0.0117 0.2813 0.0820 0.0234 0.0781 0.0430 0.0166 
2 0.2813 0.0820 0.0234 0.0781 0.0430 0.0166 0.2931 0.0917 0.0275 0.0851 0.0488 0.0191 

3 0.2900 0.0891 0.0264 0.0833 0.0472 0.0184 0.2946 0.0930 0.0281 0.0860 0.0496 0.0194 

4 0.2931 0.0917 0.0275 0.0851 0.0488 0.0191 0.2948 0.0931 0.0281 0.0861 0.0497 0.0195 
5 0.2942 0.0926 0.0279 0.0857 0.0494 0.0193 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195 

6 0.2946 0.0930 0.0281 0.0860 0.0496 0.0194       

7 0.2947 0.0931 0.0281 0.0861 0.0496 0.0194       
8 0.2948 0.0931 0.0281 0.0861 0.0497 0.0195       

9 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195       

                                          SRGS     

n               x1
(n)                       x2

(n)                 x3
(n)           x4

(n)                                                   x5
(n)               x6

(n) 

0  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.2900 0.0891 0.0264 0.0833 0.0472 0.0184 
2 0.2946 0.0930 0.0281 0.0860 0.0496 0.0194 

3 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195 
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