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ABSTRACT 

 

Air pollution is a major concern of environmentalists because of the importance of air to man 

and other living organisms. This paper is about the investigation on the effects of daily 

emission of Sulphur (IV) oxide from an industrial pollutant using a nonparametric estimator 

which is the kernel estimator. Nonparametric estimators are free from distributional 

assumptions owing to the fact that most real-life data are not from a particular family of 

distribution. The functionality of this estimator is contingent on the smoothing parameter also 

called the bandwidth that determines the degree of the smoothness applied when analyzing 

the data. The bandwidth is extrapolated by minimizing the asymptotic mean integrated 

squared error which is the objective function of the kernel estimator. In this investigation, we 

selected some kernel functions of the beta family with the Gaussian kernel and obtained their 

bandwidths or smoothing parameters with respect to their distribution. The result of the 

analysis showed that an increase in number of tons of Sulphur (IV) oxide was associated with 

higher concentration level of the gas which suggests a potential danger of the gas to humans, 

animals and plants in the environment. 
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INTRODUCTION 

 

Density estimation has been extensively employed in innumerable fields of studies 

in the examination of data with the aim of extracting relevant information from the 
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data whose family of distribution is unknown conventionally. One of the essential 

nonparametric estimators in density estimation is the kernel estimator which uses 

the random variables in the production of probability estimates. The kernel estimator 

is a probability density function simply because it integrates to unity and hence it is 

a non-negative function. In practice, the kernel estimator comprises of a function 

and a coefficient of smoothness called the smoothing parameter, tuning parameter 

or bandwidth which regulates the smoothness level to be applied to the random 

variables. The popularity of the kernel estimator is accredited to the simplicity of its 

estimation procedure and interpretation of results. Irrespective of the indisputable 

applications of the estimator amongst many fields of human endeavors, its 

implementation is usually hampered by the selection process of the bandwidths with 

little emphasis on the kernel function owing to the fact that many kernel functions 

are probability density function (Siloko et al., 2020).  

 

Nonetheless, the indispensable role of kernel method is more evident in recent 

statistical analysis in numerous disciplines (Denoel and Ficetola, 2015; Connor et 

al., 2019; Borrajo and Cao, 2020; Cortés-López and Jornet-Sanz, 2020). The 

usefulness of kernel density estimation has not been fully explored however an 

extension of its uses is found in signal processes, econometrics, chemo-informatics, 

optimization of molecular structure, geometrical molecular analysis and other 

gradient based optimization (McCabe et al., 2014). In deep neutral networks, the 

kernel method has been applied in investigating spectral distribution with the aid of 

the implicit kernel techniques where training and inferences were examined using 

Fourier features by sampling randomly (Li et al., 2019). Nonparametric estimation 

plays a major role in statistical analysis of data especially in structures identification 

where the observations are to “speak for themselves” with no stringent assumptions 

on the underlying probability distribution of the observations (Silverman, 2018). 

Nonparametric estimators unlike their parametric counterparts are flexible in 

implementation with no fixed structures while the parametric case has fixed 

structures with distributional assumption. One of the advantages of nonparametric 

estimation is that it considers all the data points in the estimation process and not 

just estimating some parameters of interest as typically practiced in parametric 

estimation. One of the popular nonparametric estimators is the kernel estimator 

which requires kernel function and smoothing parameter known as bandwidths or 

window width. Kernel density estimation involves the construction of a probability 

density estimates from a given sample with no assumptions about the probability 

distribution function of the observations (Siloko et al., 2018).  

 

The aim of this study was to examine the effects of Sulphur (IV) oxide on the 

environment using the beta polynomial kernels with emphasis on the first six 

members of the family and the limiting case which is the Gaussian kernel function 
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that is of numerous uses in data analytics. There are numerous industrial pollutants 

with adverse effects on humans, plants and animals but this paper considered the 

data of Sulphur (IV) oxide only. 

 

THEORETICAL FRAMEWORK OF KERNEL ESTIMATOR 

  

The kernel estimation method that was introduced by Rosenblatt (1956) and Parzen 

(1962) is one of the useful nonparametric estimators with its univariate form given 

as 

𝑓(𝑡) =
1

𝑛𝜆
∑ 𝐾 (

𝑡 − 𝑋𝑖

𝜆
) ,

𝑛

𝑖=1

                                                                                   (1) 

 

where 𝐾 is kernel function, 𝑛 is sample size and 𝜆 > 0 is the tuning parameter. 

Every kernel estimator is a probability density function and hence must satisfy the 

following presumptions 

∫ 𝐾(𝑡)𝑑𝑡 = 1,  ∫ 𝑡𝐾(𝑡)𝑑𝑡 = 0   and ∫ 𝑡2𝐾(𝑡)𝑑𝑡  ≠ 0.                            (2) 

The tuning parameter also called smoothing parameter or bandwidth that determines 

the degree of smoothness of the kernel estimate is very crucial in detecting the 

behavior of data (Wand and Jones, 1995; Chacón, 2009; Chacón and Duong, 2010; 

Zhang, 2015; Borrajo et al., 2017; Dhaker et al., 2018). Different techniques of 

obtaining the tuning parameter have been propounded by several authors and no 

single approach is universally accepted in all conditions, hence new tuning 

parameter selectors are being proposed. Recently, an automatic tuning parameter 

selector for recursive kernel estimators was developed by Slaoui (2019) for data 

which are length-biased while Davies and Lawson (2019) examined tuning 

parameter selectors that are based on the leave-one-out cross-validation algorithms 

in approximating likelihood functions mainly for spatial estimate. Researchers are 

still introducing novel tuning parameter selectors since its accurate selection is of 

prime importance in kernel density estimation especially with increase in dimension 

(Varet et al., 2019; Bedouhene and Zougab, 2020; Tenreiro, 2020; Tsuruta and 

Sagae, 2020). If the kernel function is continuously differentiable, then the 

derivative of Equation (1) which is called kernel density derivative estimator is 

𝑓(𝑚)(𝑡) =
1

𝑛𝜆𝑚+1
∑ 𝐾(𝑚)

𝑛

𝑖=1

(
𝑡 − 𝑋𝑖

𝜆
),                                                             (3) 

where 𝐾(𝑚) is the 𝑚𝑡ℎ derivative of the kernel which is a symmetric probability 

density function and also satisfy the axioms of kernel function. Again, as in the case 

of the kernel density method, the smoothing parameter for kernel derivative must be 

appropriately chosen owing to the fact that larger values of the smoothing parameter 
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are required for the implementation of kernel derivative and every new derivative 

order attracts two extra powers of the smoothing parameter in their estimation 

(Scott, 2015; Siloko et al., 2019a). 

 

OPTIMIZATION CRITERION FUNCTION OF KERNEL ESTIMATOR 

 

There is no generally acceptable method in estimating the “optimal” smoothing 

parameter in kernel estimation; nonetheless optimality in kernel method is usually 

with respect to some known optimization criteria functions. There are several model 

diagnostics and model performance measures in kernel estimation such as integrated 

absolute error and Kullback-Liebler distance that is the likelihood criterion. 

However, these criteria functions lack the dimensionality property when considering 

the multivariate setting of kernel estimation. The dimension of a kernel function 

provides numerous potential gains in application. One of the popular and most 

tractable performance measures or optimality functions in kernel estimation is the 

asymptotic mean integrated squared error whose result is dependent on the tuning 

parameter. The popularity of the asymptotic mean integrated squared error is due to 

its straight forward mathematical formulation unlike other error criteria functions 

with complex mathematical formulation. The asymptotic mean integrated squared 

error is made up of two components which are the integrated squared bias and the 

integrated variance given as 

𝐴𝑀𝐼𝑆𝐸(𝑓(𝑡)) =
𝑅(𝐾)

𝑛𝜆
+

𝜆4

4
𝜇2(𝐾)2𝑅(𝑓′′),                                                    (4) 

where 𝑅(𝐾) = ∫ 𝐾(𝑡)2𝑑𝑡 is the kernel roughness while 𝑅(𝑓″) = ∫ 𝑓″(x)2𝑑x is the 

curvature or roughness of the unknown probability distribution function. There is 

the usual “bias-variance” trade-off because the bias and variance components of the 

AMISE depend on the tuning parameter. The tuning parameter with the least 

AMISE value is obtain by the minimization of Equation (4) with respect to 𝜆 and is 

given as 

𝜆AMISE = {
𝑅(𝐾)

𝜇2(𝐾)2𝑅(𝑓″) 

}

1 5⁄

× 𝑛−1 5⁄ .                                                             (5) 

Also, the corresponding AMISE of the 𝑚𝑡ℎ derivative of the kernel function if 𝐾 is 

sufficiently differentiable is  

𝐴𝑀𝐼𝑆𝐸 (𝑓(𝑚)(𝑡)) =
𝑅(𝐾(𝑚))

𝑛𝜆2𝑚+1  
+

1

4
𝜆4𝜇2(𝐾)2𝑅(𝑓(𝑚+2)),                         (6) 

where 𝑅(𝐾(𝑚)) is roughness of the 𝑚𝑡ℎ derivative of the kernel, 𝜇2(𝐾)2
 
 is the 

second moment of the kernel and 𝑅(𝑓(𝑚+2)) is roughness of the 𝑚𝑡ℎ unknown 

probability density function. As observed in Equation (5), the 𝑚𝑡ℎ integrated 

variance of 𝑓(𝑚)(𝑡) is 𝑅(𝐾(𝑚)) 𝑛𝜆2𝑚+1⁄  while the integrated squared bias of 
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𝑓(𝑚)(𝑡) is 
1

4
𝜆4𝜇2(𝐾)2

 
𝑅(𝑓(𝑚+2)) with regards to kernel density derivatives 

estimation (Siloko et al., 2019b). The bias component of the 𝑚𝑡ℎ derivative order 

is  𝑂(𝜆4) while the variance attracts two extra powers for the tuning parameter with 

new derivative order. The AMISE in Equation (6) will produce its minimum value 

when the tuning parameter is 

𝜆𝐴𝑀𝐼𝑆𝐸
𝑚 = [

(2𝑚 + 1)𝑅(𝐾(𝑚))

𝜇2(𝐾)2
 
𝑅(𝑓(𝑚+2))

]

(
1

2𝑚+5
)

× 𝑛−(
1

2𝑚+5
)
.                            (7) 

The tuning parameter required for kernel density derivative estimation is usually 

larger than kernel density estimation and therefore should be critically selected 

especially with increase in the derivatives orders and dimensions (Siloko et al., 

2019c). Kernel derivative estimation should be consistent; that is the function must 

be continuously differentiable with larger tuning parameters for its effective 

implementation (Scott, 2015; Ejakpovi et al., 2019).  

 

CHOICE OF KERNEL FUNCTION 

 

Kernel estimation usually attracts two major questions which are choice of the 

kernel function and choice of the tuning parameter. The choice of the tuning 

parameter is more important in the estimation process because most kernel functions 

are probability density function. There are numerous kernel estimators with different 

applications primarily for exploration and visualization of data and more novel 

estimators were been propounded (Bouezmarni et al., 2020; Mugdadi and Sani, 

2020; Harfouche et al., 2020; Bolancé and Acuña, 2021; Mohammed and Jassim, 

2021). The general form of the beta polynomial kernel family is 

𝐾[𝑝](𝑡) =
(2𝑝 + 1)!

22𝑝+1(𝑝!)2
(1 − 𝑡2)𝑝,                                                             (8) 

where 𝑝 = 0, 1, 2, … , ∞ is the power of the polynomial (Hansen, 2005). This family 

of kernels are supported and evaluated within the interval [−1, 1]. As 𝑝 takes values 

from 0 to 3, the resulting kernels are Uniform, Epanechnikov, Biweight and 

Triweight kernels. Amongst this kernel family, the simplest kernel is the uniform 

kernel while the normal kernel is the limiting case, which is when, 𝑝 goes to infinity. 

These classes of kernels are very useful especially in exploratory and visualization 

of features in data analysis. The investigation will be on the first six members of this 

family and the Gaussian kernel which is the limiting case while the uniform kernel 

known as the simplest kernel is excluded. The exclusion of the uniform kernel 

function is due to the fact that the second derivative of the kernel function does not 

exist; hence its bandwidth cannot be computed. The computation of the bandwidth 

requires the second derivative of the kernel function and this unique property is 

absent in the uniform kernel because it is not continuously differentiable. The 
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bandwidth of the uniform kernel may be difficult to compute but other statistical 

properties such as its efficiency could be computed because the computation of the 

efficiency of kernel does not require the second derivative. The members of the beta 

family when 𝑝 = 1, 2, 3, 4, 5, 6 are Epanechnikov, Biweight, Triweight, 

Quadriweight, Pentaweight and Hexaweight kernels which are as follows 

𝐾1(𝑡) =
3

4
 (1 − 𝑡2).                                                                                (9) 

𝐾2(𝑡) =
15

16
 (1 − 𝑡2)2.                                                                          (10) 

𝐾3(𝑡) =
35

32
 (1 − 𝑡2)3.                                                                           (11) 

𝐾4(𝑡) =
315

256
 (1 − 𝑡2)4.                                                                         (12) 

𝐾5(𝑡) =
693

512
 (1 − 𝑡2)5.                                                                         (13) 

𝐾6(𝑡) =
3003

2048
 (1 − 𝑡2)6                                                                       (14) 

However, when 𝑝 goes to infinity, the kernel obtained is the Gaussian kernel which 

is 

𝐾∅(𝑡) =
1

√2𝜋
 𝑒x𝑝 (− 

𝑡2

2
).                                                                     (15) 

The given kernel functions are usually regarded as second order kernels whose 

higher order forms can be obtained by the multiplicative or additive techniques. The 

higher order forms are regarded as bias reducing kernels as a result of their fast 

convergence rates (Marron, 1994). 

 

 

RESULTS AND DISCUSSION 

 

The kernel estimator is used in the visualization of daily emission of Sulphur (IV) 

oxide, SO2 in tons from an industrial plant as presented in Table 1 (Datta, 2013). 

Table 1 is the daily emission of Sulphur (IV) oxides in tons from an industrial plant 

arranged in increasing order of magnitude. Sulphur (IV) oxide is a noxious gas 

released from the oxidization of fossil materials which have adverse effect on man 

and its surroundings. The gas is heavier than air with strangulating smell in aerial 

concentration of 500 parts per billion (ppb) which depicts high level of fatality of 

the gas to man. At certain concentration levels of the gas, breathing problems, eye 

infuriation, chest pains, lung and heart related problems might occur (Wright, 2000). 

The concentration levels of 20 ppb or below will have no effects on humans but the 

normal concentration levels of the gas in the atmosphere should be 10 ppb or lower 

(Schnelle and Brown, 2002). As a result of the importance of the knowledge of 
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Sulphur (IV) oxide, analyzing data that are related to the gas statistically is very 

important.  
 

Table 1.  Daily emission of Sulphur (IV) oxides in tons from an Industrial Plant. 
 

6.20 7.70 8.30 9.40 9.80 9.90 10.5 10.7 11.0 11.2 

11.8 12.3 12.8 13.2 13.3 13.5 13.9 14.4 14.5 14.7 

15.2 15.5 15.8 15.9 16.2 16.7 16.9 17.0 17.3 17.5 

17.6 17.9 18.0 18.0 18.1 18.1 18.4 18.5 18.7 19.0 

19.1 19.2 19.3 19.4 19.4 20.0 20.1 20.1 20.4 20.5 

20.8 20.9 21.4 21.6 21.9 22.3 22.5 22.7 22.7 22.9 

23.0 23.5 23.7 23.9 24.1 24.3 24.6 24.6 24.8 25.7 

25.9 26.1 26.4 26.6 26.8 27.5 28.5 28.6 29.6 31.8 
 

The kernel estimates of the Sulphur (IV) oxides data using the selected kernels 

besides the Gaussian kernel indicated that the data were multimodal and the modes 

were located between 10 tons and 25 tons of the gas with the peak at 19 tons. The 

different peaks represented the concentration levels of the gas that are harmless and 

harmful to humans, animals, and plants as well. The probabilities of the peak of the 

estimates of the various kernel functions lie between 0.025 and 0.06.  

 

 
Figure 1. Epanechnikov kernel estimate showing tons of Sulphur (IV) oxides.  
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Figure 2. Biweight kernel estimate showing tons of Sulphur (IV) oxides. 

 

 
Figure 3. Triweight kernel estimate showing tons of Sulphur (IV) oxides. 

 

 
Figure 4. Quadriweight kernel estimate showing tons of Sulphur (IV) oxides. 
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Figure 5. Pentaweight kernel estimate showing tons of Sulphur (IV) oxides. 

 

 
Figure 6. Hexaweight kernel estimate showing tons of Sulphur (IV) oxides. 

 

 
Figure 7. Normal kernel estimate showing tons of Sulphur (IV) oxides. 
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Sulphur (IV) oxide is a colorless and reactive air pollutant with a strong odor. The 

gas is mainly obtained from fossil fuel combustions and volcanic activities. High 

levels of concentration of Sulphur (IV) oxide usually cause respiratory related 

diseases such as inflammation and irritation of the respiratory system. Despite these 

negative effects of Sulphur (IV) oxide at high concentration levels, the gas is still of 

valuable applications in a control situation. One of the most important applications 

of Sulphur (IV) oxide is the preparation of Sulphuric acid which is widely used in 

industries. Apart from the production of Sulphuric acid, the gas can also be used as 

disinfectant, refrigerant, reducing agent, bleach, and food preservative particularly 

for dried fruits (Liu et al., 2020). 

 

The kernel estimates of the Sulphur (IV) oxide data clearly indicated regions where 

the gas can be dangerous to humans and its environment. The peaks of the kernel 

estimates (graphs) are 19 tons which simply means that the gas is harmless between 

the least value of 6.2 tons and 19 tons with respect to the level of concentration that 

is emitted within that range. The concentration levels of the gas below 20 ppb does 

not affect humans and the environment negatively and from the kernel estimates, 

the number of tons between 6 tons and 19 tons emitted daily from the industrial plant 

will have no adverse effects on the environment. At number of tons of the gas that 

are above 19 tons due to the activities of the industry, the required level of 20 ppb 

will be exceeded and the negative effects of the gas will be experienced by humans, 

animals and even plants. The normal concentration levels of Sulphur (IV) oxide in 

the atmosphere is 10 ppb and below and this is obviously displayed in the kernel 

estimates of Epanechnikov, Biweight, and Triweight and also noticed in the other 

studied kernels apart from the Normal kernel with smooth estimate. The point of 

normalcy of the gas is the first mode (bump) as the graphs rises before it gets to its 

peak and the value of that bump is within the emission region of 10 tons. At emission 

level above 20 tons daily, the graphs start falling which is an indication that humans, 

plants and animals will be drastically affected since the volume of the gas released 

into the atmosphere is beyond the prescribed level of concentrations required for 

normal living. Again, it should be noted that as the power of the polynomial 

increases, the kernel estimates produced are smoother but this is also capable of 

smoothing away important informative features of the data.  

 

As descried by the Normal kernel estimate in Figure 7, the data examined displayed 

unimodality contrary to the kernel estimates of Epanechnikov, Biweight, and the 

other studied kernels where the data exhibited multimodality. The exhibition of 

unimodality by the Normal kernel is occasioned by the magnitude of the bandwidth 

together with the continuous differentiability property and hence the production of 

a smoother estimates unlike members of the beta polynomial kernels. The peak of 

the Normal kernel estimate which is the mode is at 19 tons in consonance with the 
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other kernel estimates. Generally, the smoothness of kernel estimates is 

fundamentally depended on the smoothing parameter which determines and also 

regulates the contributions of the bias and variance components to the AMISE value. 

Table 2 is the statistical properties and performance measures of Sulphur (IV) oxides 

data with the AMISE as the error criterion function of the selected kernels. The 

results in Table 2 show that the Epanechnikov kernel produced the least value of the 

AMISE amongst the beta kernels and that supports its optimality property with 

respect to the AMISE as an error criterion function. This can also be viewed that 

amidst the beta kernel family, in terms of risk detection of the industrial pollutant, 

the Epanechnikov kernel can easily detect the slightest changes in the environment 

regarding the volume of Sulphur (IV) oxide released into the atmosphere. 
 
 

Table 2. Statistical properties and risk measures of industrial pollution effects. 
 

Kernel Functions 𝑹(𝑲) 𝝁𝟐(𝑲) 𝑹(𝒇″) 𝝀 𝐕𝐚𝐫𝐢𝐚𝐧𝐜𝐞 𝐁𝐢𝐚𝐬𝟐 AMISE 

𝐾1(𝑡) =
3

4
 (1 − 𝑡2) 

3

5
 

1

5
 

9

2
 

1.0453 0.0451 0.0023 0.0473 

𝐾2(𝑡) =
15

16
 (1 − 𝑡2)2 

5

7
 

1

7
 

45

2
 

1.2499 0.0922 0.0024 0.0945 

𝐾3(𝑡) =
35

32
 (1 − 𝑡2)3 

350

429
 

1

9
 

  35 1.3128 0.1122 0.0017 0.1139 

𝐾4(𝑡) =
315

256
 (1 − 𝑡2)4 

2204

2431
 

1

11
 

8505

143
 

1.3925 0.1420 0.0015 0.1435 

𝐾5(𝑡) =
693

512
 (1 − 𝑡2)5 

4158

4199
 

1

13
 

20790

221
 

1.4653 0.1741 0.0013 0.1754 

𝐾6(𝑡) =
3003

2048
 (1 − 𝑡2)6 

26679

25000
 

1

15
 

45045

323
 

1.5308 0.1754 0.0012 0.1765 

𝐾∅(𝑡) =
1

√2𝜋
 𝑒x𝑝 (− 

𝑡2

2
) 

1

2√𝜋
 

1 3

8√𝜋
 

2.4716 0.0014 0.0004 0.0018 

 

Despite the production of the least AMISE value amongst the beta kernel functions, 

the estimate of the Epanechnikov kernel is wiggly in contrast with the estimate of 

the Normal kernel. The wiggly Epanechnikov kernel estimate and smooth Normal 

kernel estimate are mainly attributed to the magnitude of the bandwidth as presented 

in Table 2. The Gaussian kernel produced the largest smoothing parameter which 

resulted in the production of a smooth estimate and also with the smallest AMISE 
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value in all the studied functions. Although the Epanechnikov kernel is the optimal 

kernel of the beta polynomial family with regards to the AMISE, oftentimes 

inaccurate statistical information about the observations been investigated may be 

divulged by the estimate. The prominence of the Normal kernel in density estimation 

and data analysis is on the basis of its production of smooth density estimates that 

are devoid of erroneous findings. The strength of the kernel function in detection of 

risk in the environment decreases as the power of the polynomial kernel increases. 

The estimates of the kernel functions studied are similar and the similarity is a clear 

indication that higher probabilities values are associated with higher tons of the 

Sulphur (IV) oxide. The tuning parameter which regulates the contribution of the 

components of the AMISE increases as the power of the kernel increases and this 

accounted for the increase in the AMISE value which is regarded as the risk 

measure. However; with the Gaussian kernel which is strictly not a member of the 

beta kernel family, the AMISE value reduces drastically despite the increase of the 

bandwidth implying that the Normal kernel surmounts the other kernel functions 

explored.  

 
  

CONCLUSION 

 

This paper discusses the potentials of kernel estimators in detecting the effects of 

the volume of Sulphur (IV) oxide released into the atmosphere daily from an 

industrial plant. The rising level of the effects of the gas is displayed in the kernel 

estimates and the regions of high number of tons of the gas with adverse effects in 

the environment are vividly shown. When the number of tons emitted daily is above 

20 tons, the prescribed concentration levels of the gas in the atmosphere will be 

exceeded which resulted in increase in probabilities values. The increase in 

probabilities values associated with increase in the number of tons emitted daily is 

an indication that human lives, plants and animals shall experience the negative 

effects of the gas in the environment. Hence; appropriate government authority 

should enact laws that should regulate the emission of Sulphur (IV) oxide into the 

environment. 
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