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ABSTRACT 

 

Ebola virus (EBOV) causes a haemorrhagic and lethal Ebola disease disastrous to human beings, which is 

transmitted by contact of body fluids of infected animals and humans. Presently, there are no therapies for 

the disease. In this paper, a mathematical model is proposed to investigate the in-vivo dynamics of EBOV 
infection with sensitivity analysis. A system of five non-linear ordinary differential equations constitutes 

the model, from which the basic reproduction number, R0 is calculated using the next generation matrix 

method. The parameter R0 is employed to analyze global stability of disease-free and endemic equilibria. 
Using the Metzler matrix operator, the results indicate that the disease-free equilibrium point is globally 

asymptotically stable provided that R0 < 1, which implies that the disease disappears from the host after 

some period of time. With Lyapunov Stability Theory and LaSalle Invariant Principle, the results indicate 
that the endemic equilibrium point is globally asymptotically stable provided that R0 > 1, which implies 

that the disease persists in the host. Sensitivity analysis of the basic reproduction number pertaining to the 

model parameters is achieved using forward normalized sensitivity index method. The results indicate that 
the parameters for infection rate, production rate of uninfected target cells and virus replication rate are 

positively sensitive. On the other hand, the parameters for natural death rate of target cells and natural 

death rate of the virus are negatively sensitive, implying that the basic reproduction number decreases as 
the parameters increase and vice versa. Besides, it is shown that the parameter for the infection rate is the 

most sensitive one while the parameter for the virus reproduction rate is the least sensitive one. Numerical 

simulations are used to validate the analytical results. The results suggest implementation of deliberate 
control measures to eradicate EBOV disease by considering sites in the model to which the most sensitive 

parameters are affiliated. 

 

Keywords: EBOV model; Basic reproduction number; Global stability; Sensitivity analysis; Antibody 

response. 
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INTRODUCTION 

 

Ebola virus (EBOV) is a single-stranded negative-sense RNA virus, which belongs 

to the family Filoviridae, from Latin word filum which means thread (Carter and 

Sounders, 2013). EBOV was first known in 1976 near Ebola River found in the 
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Democratic Republic of Congo (DRC) (Fritz, 2012; ECDC, 2022). EBOV is 

classified in five strains known as Zaire, Tai Forest (Ivory Coast), Sudan, 

Bundibugyo and Reston strains. Of the five strains, Zaire and Sudan strains have 

largely caused human Ebola diseases. The virus causes dreadful hemorrhagic and 

lethal Ebola virus disease (EVD) to humans. Ever since it was known, several EVD 

outbreaks amongst humans have occurred sporadically in several Sub-Saharan 

countries, mostly in Gabon, South Sudan, Ivory Coast, Uganda and South Africa 

(CDC, 2014). EBOV was the source of the 2013-2015 EVD outbreak, the largest 

ever in history, in some West African countries, which resulted in at least 230114 

total cases and 9840 total deaths as of March 4, 2015 (CDC, 2015). About 14 EVD 

outbreaks have been recorded in DRC since 1976 and the most recent one occurred 

in 2022 (IFRC, 2022). The 2018-2020 outbreak was the second largest in history, 

which resulted in a total of 3481 cases, 1162 recoveries and 2299 deaths (WHO, 

2021). Recently, an outbreak of EVD was reported in Uganda, where seven cases 

were confirmed to have contracted Sudan ebolavirus, including one death; forty-

three identified and ten people suspected to have been infected with the virus were 

getting treatment at Mubende Regional Hospital as of September 22, 2022 (WHO, 

2022). WHO also reported 131 confirmed cases of EVD, including 48 deaths, as of 

November 2, 2022. There are no licensed vaccines against EVD caused by Sudan 

ebolavirus 

 

Overall, EVD has been a world tragedy to human health as it jeopardizes human 

health because of its hemorrhagic and lethal nature. The disease can cause death to 

an infected host in less than two days (Peters, 1999). EBOV can be transmitted from 

animal to animal, human to human and animal to human. Humans can be infected 

through saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen of 

infected individuals. The symptoms of the disease, EVD, are typically headache, 

fever, vomiting, bleeding, diarrhea and rash (Fauci, 2014). The chance of death from 

the disease is about 60% and upsurges as the disease progresses to hemorrhagic 

stage. Currently, there is no cure for EVD (Melinda, 2022). Nevertheless, the virus 

transmission and subsequent deaths can be largely reduced through early detection 

and effective contact tracing (Beeching et al., 2014). Symptomatic infected 

individuals are usually supported by maintaining fluids, electrolytes and acid-base 

balance of blood and treating secondary infections (Tseng and Chan, 2015). 

 

Ahead of model formulation, it is necessary to understand how the immune system 

functions in response to EBOV infection. This is because survival from EVD is 

governed by the host’s ability to develop and manifest a robust immune response 

early after the virus infection (Wester, 2015). A major element of the immune system 

is the T-cell, which is a lymphocyte that develops in the thymus. The T-cells usually 

exist in two different cells populations: Helper T-cells or CD4 and Cytotoxic T 

lymphocytes (CTL) or CD8. The acronyms CD4 and CD8 represent classes of 
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proteins on the surface of these cells. (Nowak and May, 2000; Wodarz, 2005; 

Ramirez, 2014) Once the virus is introduced into the host’s body, the T-cells become 

activated, which is the launch of an adaptive immune response (Roemer, 2013; 

Wester, 2015). The activated T-cells discharge cytokines and proliferate. The 

cytokines are a chemical mediator that functions as the communication coordination 

for the immune system. Moreover, the cytokines, discharged by Helper T-cells, 

largely contribute to the activation and proliferation of CTLs. When the CTLs are 

exposed to the cytokines discharged by the activated Helper T-cell, they themselves 

become activated (Rihan et al., 2013; Wester, 2015). The T Helper cells also play an 

important role in the activation of the B-cells and so in the discharge of antibodies. 

The B-cells release antibodies that deactivate free viruses. The moment the CTLs are 

activated, they start generating chemicals that kill infected cells. The infected cells 

become a factory of production of new viruses (Ramirez, 2014). Activation of CTLs 

is indispensable in investigating the stimulation and effect of the CTL when 

investigating the course of infection. The CTL response is a major element of host 

survival and regaining during a viral infection; this is because of its ability to kill 

infected cells on contact (Wester, 2015). This study aims at investigating the role of 

the CTLs and antibody responses in the dynamics of in-host EBOV infection. 

 

Mathematical modeling has been an important tool in Mathematical Epidemiology. It 

has been used to forecast transmission and extinction of an infectious disease as time 

elapses (Okosun and Makinde, 2014; Osman and Makinde, 2018; Eyaran et al., 

2019; Osman et al., 2020e; Onsongo et al., 2022). It has been contributory in 

investigating mechanisms that govern viral kinetics in order to provide a quantitative 

understanding and formulate recommendations for treatments (Nguyen, 2015). 

Modeling involves the following important aspects: formulation of a model and 

checking it for biological legitimacy, analysis of the model, where the model 

equilibria and basic reproductive number are obtained; stability analysis of the model 

equilibria; sensitivity analysis, which helps to identify locations in the model where 

deliberate efforts can be directed in order to control the course of infection. 

Moreover, it functions as a platform for implementing an optimal control strategy, 

which is anticipated to provide plausible methodologies for disease control and 

eradication. As yet, few models have been formulated to investigate in-host 

dynamics of EBOV. Wester (2015) developed a model to investigate in-vivo 

dynamics of EBOV with the CTL response, whereby stabilities of the model 

equilibria were analyzed and the results indicated that they are locally and globally 

asymptotically stable. Ismail and Mtunya (2021) protracted the model in order to 

study the dynamics of EBOV with suppressed CTL response by the virus. The study 

focused on sensitivity analysis of the threshold parameter R0 with respect to the 

model parameters. The results indicated that the parameter for infection rate was the 

most sensitive one while the least sensitive parameter was the rate of viral 

reproduction. In the current study, the proposed model will involve all dynamical 
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effectors of the aforementioned models and antibody response. Then sensitivity 

analysis will be performed to investigate the influence of each model parameter on 

the threshold R0, obtained from the model. Since there are no consistent therapies 

and vaccines, studies on the dynamics of Ebola infection and search of suitable 

control strategies are ongoing. Thus, findings of the current study provide the 

rationale for further investigation to understand the dynamics of EVD and stimulate 

more effective control strategies. 

 

 

MATERIALS AND METHODS 

 

Formulation of the model  

 

The model is formulated based on the assumptions introduced by Ismail and Mtunya 

(2021) 

a. Uninfected cells increase at a constant rate and have equal chances of being 

infected by the virus.  

b. The uninfected and infected cells die naturally at equal constant rates. The infected 

cells produce viruses at a constant rate. 

c. The viruses are produced from infected cells at a constant rate, die naturally at a 

constant rate and suppress (kill) cytotoxic T-lymphocytes at a constant rate. 

d. The cytotoxic T-lymphocytes are produced, eliminate infected cells and die 

naturally at constant rates. 

e. The antibody cells are produced at a constant rate and die naturally at constant 

rates.  

 

The model consists of four heterogeneous populations, which are organized in six 

compartments: uninfected human target cells, infected human target cells, free Ebola 

virus (EBOV) population, cytotoxic T lymphocytes population and antibodies cells 

population. The variables )(tU , )(tI , )(tV , )(tZ  and )(tW  represent the numbers of 

populations at time t respectively. For simplicity of analyzes and discussions, the 

variables are condensed to U , I , V , Z  and W , respectively. Uninfected cells, U  

are increased by a production rate   and die naturally at the rate U . Free viruses, 

V  interact with the uninfected cells at the rate VU  to produce infected cells, I . 

The free viruses kill cytotoxic T lymphocytes, Z  at the rate VZ  and die naturally at 

the rate V . The cytotoxic T lymphocytes increase at the rate IZ , kill the infected 

cells at the rate IZ  and die naturally at the rate Z . The infected cells replicate 

viruses at the rate I , which increases the virus population, and die naturally at the 

rate I . The antibody cells, W  increase at the rate BW , kill the viruses at the rate 

BW  and die naturally at the rate W . The descriptions of the model parameters are 

presented in Table 1.  
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Table 1. Parameter Descriptions. 
 

Parameter Description 
  Infection rate of uninfected target cells. 

  Natural death rate of the uninfected and infected target cells. 
  Natural death rate of cytotoxic T lymphocytes. 
  Natural death rate of the virus. 
  Natural death rate of antibodies. 
  Extermination rate of the virus. 
  Production rate of antibody cells. 
  Replication rate of the virus. 

  Production rate of cytotoxic T lymphocytes. 
  Extermination rate of infected cells.  
  Suppression rate of cytotoxic T lymphocytes 

  Production rate of uninfected target cells 

 

Diagram of EBOV dynamics model 

 

In view of the assumptions, descriptions of variables, parameters and dynamics, a 

diagram of Ebola virus dynamics model is presented, which is shown in Figure 1. 

VU
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V

W

IU

IZ
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 I
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VZ

U

VW

 
Figure 1. Diagram of EBOV dynamics model. 

 

Equations of the model  

 

In view of the descriptions of model state variables, parameters and dynamics, a 

system of five non-linear ordinary differential equations is formulated, where 

Equation 1 defines the dynamics of the uninfected target cells population; Equation 

2, the infected cells population; Equation 3, the virus population; Equation 4, the 

CTLs population and Equation 5, the antibodies population.  
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UVU
dt

dU
   

 
)1(  

  ZIZVU
dt

dI
    )2(  

   VVWI
dt

dV
    

)3(  

   ZVZIZ
dt

dZ
    

)4(  

   WVW
dt

dW
    

)5(  

where 0)0( U , 0)0( I , 0)0( V , 0)0( Z  and 0)0( W  are the given initial 

conditions. 

 

Basic properties of the model 

 

For biological validity of the model, the solutions to the system of equations )5()1(    

must be positive and bounded for all values of time. For example, concluding that a 

virus population is negative is certainly unrealistic. Besides, the populations’ sizes 

must be finite as the human body consists of a finite number of cells (Wester, 2015). 

The boundedness and positivity of solutions indicate that once an individual is 

infected, the virus population will remain below the detectable boundary without 

triggering significant impairment (Roemer, 2013). In consideration of this, proofs of 

positivity and boundedness for the system of equations )5()1(   are presented, which 

are achieved through Lemma 1 and Lemma 2, respectively. 

  

Positivity of Solutions  

Lemma 1: Let 00 t . If the initial conditions satisfy: 0)0( U , 0)0( I , 0)0( V , 

0)0( Z  and 0)0( W , then )(tU , )(tI , )(tV , )(tZ  and )(tW  will remain positive 

in  0

5 ,0, ttR 
. 

 

Proof: At this point, it is required to prove that )(tU , )(tI , )(tV , )(tZ  and )(tW   

will remain positive in  0

5 ,0, ttR 
. It is known that all parameters used in the 

model are positive. Then, from the model system of equations )5()1(  , a lower 

bound can be placed on each equation as shown below. 

                                                           .                        
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
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                                     )6(  

With the basic differential equations methods, the inequalities (6) can be solved to 

produce: 

 
0)(exp)(

0














 

t

dssVttU  , 
 

 
0)(exp)(

0














 

t

dssZttI   
 

   0exp)(  ttV    

 
0)(exp)(

0














 

t

dssVttZ   
 

and   0exp)(  ttW  . 

Thus, )(tU , )(tI , )(tV , )(tZ  and )(tW   will be positive in 5

R ,  0,0 tt  . 
 

Invariant regions 

Lemma 2: All feasible solutions of the EBOV model system )5()1(   are contained 

in a uniformly bounded region 5

 R , 0t , where  

1112

  RRRRWZVP . 

Proof: At this point, it is required to determine the invariant (bounded) region   

that contains all feasible populations, the process requires determining the invariant 

region that contains solutions for each population.  

 

Target cells population 

 

Here, it is required to determine the bounded region that comprises all feasible 

solutions for the target cells population. Let   2,  RIUP
 be the solution with 

initial conditions 
0U  and 

0I , 0t , where P  represents total population of the 

target cells at time t. This is accomplished as follows: 

The total population, P  is given by 
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)()()( tItUtP  , 0t .  

This implies that  

                   
dt

dI

dt

dU

dt

dP
                       )7(  

Substitution of equations (1) and (2) into (7) produces 

 
PIZ

dt

dP
                                      )8(  

Placing an upper bound on (8) produces 

 P
dt

dP


                                    )9(  

Using the basic differential equations methods, the inequality (9) can be solved to 

produce: 

 
)exp()( 0 tPtP 










 





                                     )10(  

where 
0P  denotes the initial size of target cells population evaluated at the initial 

conditions 00 U  and 00 I . 

 

Analysis of inequality (10) is achieved with two cases at 0t . 

Case 1: If 0P , the largest value of  tP 









 



exp0

 is 
0P , which is got 

at 0t . Thus, the inequality (10) reduces to 
0)( PtP  . 

Case 2: If 0P , the value of  tP 









 
 exp0

 is negative and tends to zero as 

t . So, the largest value of  tPtP 









 



 exp)( 0

 is  . Thus, 

)(tP . This implies that   PPtP ,max)( 0
 for all 0t  and any value of 

0P , 

where P . Thus, )(tP  is bounded above. This means all feasible solutions for 

the target cells population are contained in the region 
P  defined by 

     PtPRIUP )(:),( 2 , 0t .       )11(  

The feasible region P  is upper-bounded for which P  is an upper bound. 

 

Ebola virus population 

 

At this point, it is required to determine the bounded region consisting of all feasible 

solutions for the Ebola virus population. Let 1

 RZV
 be the solution with initial 

condition 
0V , 0t , where 

0V  represents total population of EBOV at time t.  This 

is achieved as follows: 
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Combining Equation 3 and (11) produces the following inequality  

 
VVWP

dt

dV
     

This can be reduced to 

 
VP

dt

dV
                                        )12(  

Using the basic differential equations methods, the general solution of the inequality 

(12) is 

 
)exp()( 0 t

P
V

P
tV 




















                         )13(  

where 
0V  is the initial size of Ebola virus population. 

Analysis of inequality (13) is achieved with two cases at 0t  as follows: 

Case 1: If   PV0
, the largest value of )exp(0 t

P
V

P






















 is 
0V , 

which is found at 0t . Thus, the inequality (13) reduces to 
0)( VtV  . 

Case 2: If   PV0
, the value of )exp(0 t

P
V 

















 is negative, which  

approaches zero as t . So, the largest value of )exp(0 t
P

V
P






















 is 

 P . Thus,   PtV )( . This implies that   VVtV ,max)( 0
, 0t  and 

whatever value of 
0V , where    PV . Consequently, )(tV  is bounded above. 

This means all feasible solutions for the virus population are contained in the region 

V , which is defined by 

    VtVRVV )(:1 , 0t .                  )14(  

The feasible region 
V  is upper-bounded for which V  is an upper bound. 

 
Cytotoxic T Lymphocytes population  

 

Here, it is required to determine the bounded region consisting of all feasible 

solutions for the CTLs population. Let 1

 RZZ
 be the solution with initial 

condition 
0Z , 0t , where 

0Z  represents total population of CTLs at time t. This 

is achieved as follows: 

Combining Equation 4, (11) and (14) produces the following inequality  

 
ZZVZI

dt

dZ
     
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This can be expressed as 

 
ZVI

dt

dZ
)(                                       )15(  

Using the basic differential equations methods, the general solution of the inequality 

(15) is 

 ])exp[()( 0 tVIZtZ                                )16(  

Where 
0Z  is the initial size of cytotoxic T lymphocytes population. 

Analysis of (16) shows that )(tZ  is bounded above if and only if  

0   VI , 0t . So, 
0)( ZtZ  . 

Therefore, all feasible solutions for the cytotoxic T lymphocytes population are 

contained in the region 
Z , which is defined by  

 })(:{ 0

1 ZtZRZZ  
                                )17(  

The feasible region 
Z  is upper-bounded for which 

0Z  is an upper bound. 

 

Antibody cells population  

 

Here, it is required to determine the bounded region comprising all feasible solutions 

for the antibody cells population. Let 1

 RWW
 be the solution with initial 

condition 
0W , 0t , where 

0W  represents total population of the antibody cells at 

time t.  This is achieved as follows: 

Combining Equation 5 and (14) produces the following inequality  

 
WWV

dt

dW
     

This can be expressed as 

 
WV

dt

dW
)(                                         )18(  

Using the basic differential equations methods, the general solution of the inequality 

(18) is 

 ])exp[()( 0 tVWtW                                   )19(  

Analysis of the inequality (19) shows that )(tW  is bounded above only if 

0 V . Thus, 
0)( WtW  , where 

0W  is the initial size of antibody cells 

population. Therefore, all feasible solutions for the antibody cells population are 

contained in the region 
W , which is defined by  

                                             })(:{ 0

1 WtWRWW  
                             )20(  

The feasible region 
W  is upper-bounded for which 

0W  is an upper bound. 

Thus, using the results (11), (14), (17) and (20), the invariant (bounded) region,   

containing all feasible solutions for the whole model system )5()1(   is  
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}{ 1112

  RRRRWZVPWZVP
, where  

    PtPRIUP )(:),( 2  

    VtVRVV )(:1  

 })(:{ 0

1 ZtZRZZ  
 

and })(:{ 0

1 WtWRWW  
 

Following proven positivity of the state variables  WZVIU ,,,,  and invariant 

(bounded) region   for the model system )5()1(  , the proposed EBOV model is 

mathematically and biologically realistic (Hethcote, 2000). Therefore, it can be 

employed to investigate the dynamics of EBOV infection in vivo. 

 

Existence of model equilibria 

 

At this point, we examine the existence of disease-free equilibrium 
0E  and endemic 

equilibrium E . The equilibria 
0E  and E  are obtained by equating the derivatives 

(with respect to time) of the variables of the model system )5()1(   to zero (Mlay et 

al., 2022; Kung’aro, 2016). More precisely, the equilibria are obtained when 

0
dt

dW

dt

dZ

dt

dV

dt

dI

dt

dU . Thus, the model equations become 
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                                   )21(  

Solving the equations of the system (21) produces 

 )0,0,0,0,(),,,(0   ZVIUE                       )22(  

and  

        ),,,(   ZVIUE ,                                                                                                                        )23(  

where 







U ,  



 
I ,  




V ,  

  






 )1(

Z  and 



 
 )(

W
. 

 

Basic reproduction number 

 

The basic reproduction number is a threshold value that governs the transmission 

dynamics of an infectious disease within a community or an infected individual, 

usually represented by R0. It is greatly instrumental in modeling infectious diseases 
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(Diekmann et al., 1990; Diekmann, 2000), where it is used as a metric to describe the 

course of infection. If, 10 R , the disease is prevalent in the community or infected 

host; the disease disappears if 10 R . It is usually computed using the next 

generation matrix operator (Tilahun et al., 2017a; Osman et al., 2020a; Osman et al., 

2020b). Thus, considering the current Ebola virus dynamics model, 
0R  is obtained as 

follows. 

 

To achieve this, equations (2) and (3) are considered, which are 

IIZVU
dt

dI
   and VVWI

dt

dV
   

Let M  be the next generation matrix defined by 1 FYM , where  
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Let  Ti ffF 21   and  Ti yyY 21 . Then  Ti IVUF   and  

 Ti VVWIIZY    

This implies that  
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And then substituting (25) and (26) into (24) produces M . Thus, M  is given by 
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The eigenvalues of M  are given by 01  FYIMI  , 

where
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Thus,  
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From (27), the eigenvalues of M  are 






21


  and 






22


  

The basic reproduction number, 
0R  is the spectral radius of the next generation 

matrix M , which is the dominant eigenvalue (Van de Driessche and Watmough, 

2002). That is, 





20 )(


 MR . 

Consequently, the basic reproduction number, 
0R  is  

 




20


R

                                    )28(  

The threshold parameter 
0R  governs the course of Ebola virus infection in an 

infected host. It merely depends on the parameters for replication rate of the virus, 

infection rate, increasing rate of uninfected target cells, natural death rate of target 

cells and natural death rate of the virus. On the other hand, the immune system does 

not influence 
0R  as it encompasses no any parameters affiliated to the cytotoxic T 

lymphocytes and antibody cells populations. 

 

Stability analysis of the model equilibria 

 

Global stability of disease-free equilibrium point 

In this section, we analyze global stability of disease-free equilibrium point using 

Metzler matrix method as detailed by Castillo-Chaves et al. (2002) and applied by 

Kamgang and Sallet (2008); Dumont et al. (2008); Kung’aro (2016); Ngeleja (2019) 
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and Ismail (2021). To achieve this, we initially apportion the model system of 

equations )5()1(   into transmitting and non-transmitting components. 

Let 
nY  be the vector for non-transmitting compartments; 

iY  be the vector for 

transmitting compartments and 
nDFEY ,
 be the vector of disease-free equilibrium point. 

Then 
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Thus, the equations of the system (29) become 
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From (30) and (31), we deduce that 































00

00

00

1C
, 




























2C
 and 



















 




00

00

0

3





C

. 

The eigenvalues of the matrix 
1C  are  ,   and  , which are real and negative. 

Thus, the results ratify that the system  

inDFEn
n YCYYC

dt

dY
3,1 )(  . 

is globally asymptotically stable at 
nDFEY ,

. Besides, we find that the matrix 
2C  

contains negative main diagonal and non-negative off-diagonal elements. Therefore, 

2C  is a stable Metzler matrix. Hence, the disease-free equilibrium 
0E  is globally 

asymptotically stable when 10 R . Theorem 1 summarizes the results.  
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Theorem 1: The disease-free equilibrium, 

0E  of the Ebola virus infection model 

system )5()1(   is globally asymptotically stable if 10 R . 

 

Global stability of endemic equilibrium point 

 

In this section, we analyze global stability of the endemic equilibrium (
0E ) using the 

approach of  Van den Driessche and Watmough (2002), Korobeinikov (2004), 

McCluskey (2006); Mpeshe et al. (2011); Ullah et al. (2013), Kung’aro (2016) and 

Ngeleja (2019). The analysis is done using an appropriate Lyapunov function 

constructed from the model system )5()1(  . 

 

We construct the Lyapunov function of the form  

 ,)ln(  iiii xxxbL  )32(  

where 
ib  connotes a properly selected positive constant 0ib , 

ix  stands for the 

population of the i
th  

compartment and 

ix  defines the equilibrium point, which is the 

0E  in this case. 

 

Thus, using the Lyapunov function form (32), we have  

)ln().ln()ln()ln()ln( 54321 WWWbZZZbVVVbIIIbUUUbL  
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At this point, the constants )5,...,2,1(ib  are non-negative in  . The Lyapunov 

function L  and its constants )5,...,2,1(ib  are suitably selected such that L  is 

continuous and differentiable in a space. 

 

Differentiating (33) with respect to time t produces 
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At the endemic equilibrium point,
E , (34) becomes 
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Simplification of (35) produces 
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where the function ),,,,( WZVIUG  is non-positive.  

Using the approach of Mukandavire et al. (2009); Kung’aro (2016) and Ngeleja 

(2019), we find that 0G  for all ),,,,( WZVIUG . Therefore, 0
dt

dL
 for all 

0,,,, WZVIU  and is zero when UU ,  II , VV ,  ZZ  and WW . 

Hence, the largest compact invariant set in  , such that 0
dt

dL , is the singleton 

E , which represents the endemic equilibrium point of the model system )5()1(  . 

LaSalle’s Invariant Principle (LaSalle, 1976) guarantees that E  is globally 

asymptotically stable in 
0

 , the interior of  . Theorem 2 summarizes the results. 

 

Theorem 2: If 10 R  then the Ebola virus infection model system )5()1(   has a 

unique endemic equilibrium point and is globally asymptotically stable in the 

interior of the region  . 

 

Sensitivity analysis 

Sensitivity analysis aims at analyzing the model parameters in order to determine 

parameters that have enormous transmission influence on the disease (Muia et al., 

2018; Osman et al., 2020d). The analysis considers the parameters embedded in 
0R  

because these are the contributing factors of disease spread or extinction. This can be 

known by the sensitivity index of each parameter. As stated by Chitnis et al (2008), 

the sensitivity index of each parameter is computed using the relation: 
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                                   )36(  

where Q  is the parameter to be analyzed and 0R

QS  is the sensitivity index of 

parameter Q . If 00 
R

QS , the parameter Q  has an effect of controlling the disease; 

but then if 00 
R

PS , Q  has an effect of increasing the disease spread (Onsongo et al., 

2022). Then the sensitivity indices of the parameters embedded in 
0R  are computed 
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using relation (36) and parameter values itemized in Table 2. Most parameters values 

are adopted from different literatures and others are just estimated values. 

 
Table 2. Parameter values used for sensitivity analysis. 
 

Parameter 
Parameter 

value 
Units Source 

  0.1 11   daycellmil  CDC (2014). 

  0.5 1 daycell  Ismail and Mtunya (2021). 

  0.5 1 daycell  Wester (2015). 

  1.15 1 daycell  Nguyen et al. (2015). 

  1.05 1 daycell  Estimated. 

  1.03 11   daycellmil  Estimated. 

  0.05 11   daycellmil  Estimated. 

  40.9 
1 daycell  Wester (2015). 

  0.1 11   daycellmil  Banton et al. (2010). 

  0.1 11   daycellmil  Wester (2015). 

  0.1 
11   daycellmil  Ismail and Mtunya (2021). 

  5.05 
11   daymilcell  Wester (2015). 

 

The sensitivity indices of all parameters are computed and their values are altogether 

itemized in Table 3. Therefore, 1036.00
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and so on. 

 

The sensitivity indices in Table 3 are listed in increasing magnitude of their absolute 

values from above. 

 

Numerical simulations 

 

In mathematical modeling of infectious diseases dynamics, numerical simulations 

are usually performed to substantiate analytical results of formulated models (Ismail 

and Luboobi, 2019; Ismail and Mtunya, 2021; Sakkoum et al., 2022). Basically, 

Table 3. Sensitivity indices of the model parameters embedded in 
0R   

Parameter Sensitivity index 

  +0.1036 

  +0.8392 
  -3.6850 
  -16.952 
  +42.380 
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numerical simulations are employed to investigate dynamical behaviors of model 

systems whose mathematical equations are too complicated to provide analytical 

solutions (Tilahun et al., 2017b; Osman et al., 2018c; Otoo et al., 2021). Considering 

the current model system )5()1(  , numerical simulations are performed to validate 

the analytical results. This is achieved using the parameter values itemized in Table 

2. However, two sets of values for the parameters embedded in the basic 

reproduction number, 
0R , are appropriately selected in such a way that one set 

constitute 10 R  and the other, 10 R  to study numerically the existence of disease-

free and endemic equilibria respectively. 
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(b) 

Figure 2 (a) and (b). Simulations for solution trajectories showing the disease-free 

point, obtained using the parameter values 5.12 , 01.0 , 04.1 , 

09.0  and 15.3 ; and initial conditions 500 S , 200 I , 300 V , 

200 Z  and 100 W . In this case, 5746.00 R .   
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Figure 3. Simulations for solution trajectories showing the endemic point, obtained 

using the parameter values 5.12 , 1.0 , 05.0 , 09.1  and 

15.1 ; and initial conditions 500 S , 200 I , 300 V , 200 Z  and 

100 W . In this case, 7695.210 R .   
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Figure 4. Simulation of the effect of replication rate of the virus on 

0R . 
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Figure 5. Simulation of the effect of infection rate on 

0R .  
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Figure 6: Simulation of the effect of production rate of uninfected target cells on 

0R . 
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Figure 7. Simulation of the effect of natural death rate of the virus on 

0R . 
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Figure 8. Simulation of the effect of natural death rate of target cells on 

0R . 

 



 

 

 

201 Ethiop. J. Sci. & Technol. 16(3): 181-207, October 2023 

 

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Production rate of uninfected target cells, 

B
a
s
ic

 r
e
p

r
o

d
u

c
ti

o
n

 n
u

m
b

e
r
, 
R

0

 

 

=0.1

=0.4

=0.7

=1.0

=1.3

 
Figure 9. Simulation of the effect of production rate of uninfected target cells on 

0R  

with various infection rates. 

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

Replication rate of the virus, 

B
a
s
ic

 r
e
p

r
o

d
u

c
ti

o
n

 n
u

m
b

e
r
, 
R

0

 

 

=0.1

=0.4

=0.7

=1.0

=1.3

 
Figure 10. Simulation of the effect of virus replication rate on 

0R  with various 

infection rates. 
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Figure 11. Simulation of the effect of natural death rate of the virus on 

0R  with 

various infection rates. 
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Figure 12. Simulation of the effect of natural death rate of target cells on 

0R  with 

various infection rates. 

 

 

RESULTS AND DISCUSSION 

 

This study aimed to investigate the dynamics of Ebola virus infection in vivo through 

modeling. This was achieved through stability analysis of the model equilibria and 

sensitivity analysis of the basic reproduction number, 
0R  with respect to the model 

parameters. Analytically, the results show that the basic reproduction number 
0R  

does not comprise parameters linked to the immune system, implying that the CTLs 

and antibody responses do not determine the course of EVD in vivo.  

 

The global stability analysis of the model equilibria indicate that the disease-free 

equilibrium point is asymptotically stable if 10 R , which implies that the disease 

can eventually disappear as time t elapses to infinity )( t . Analysis of the 

endemic equilibrium point established asymptotic stability if 10 R , which implies 

that the disease can persist within the host. The sensitivity indices presented in Table 

3 indicate that 
0R  increases as the parameters  ,   and   increase and vice versa. 

This is reflected by the parameters’ positive sensitivity indices. It is also observe that 

0R  decreases with increasing parameters   and  , and vice versa, which is reflected 

by the parameters’ negative sensitivity indices. Specifically, an increase in the 

infection rate by 10% would increase the basic reproduction number by 423.8%. 

Furthermore, increasing the natural death rates of uninfected target and infected cells 

by 10% would decrease 
0R  by 169.52%. Biologically, this implies the disease spread 

increases as 
0R  increases and vice versa. That is, at greater values of 

0R  the disease 

is prevalent and it disappears at smaller values of 
0R . The parameters with the 
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greatest absolute values of sensitivity indices would ether decrease or reduce the 

spread of the disease at faster paces. 

 

Numerical simulations were implemented to illustrate the stability of the model 

equilibria and the influence of the parameters on the basic reproduction number 
0R . 

Figures 2a and 2b (Figure 2a zoomed to Figure 2b) illustrate the existence of 

disease-free equilibrium (DFE) defined by the DFE point, where the trajectories 

corresponding to the infected, virus, CTLs and antibody cells populations converge 

to zero as t . The trajectory corresponding to the uninfected target cells 

population converges to a no-zero value. Overall, this means that the state of no 

infection can be attained after some time. On the other hand, Figure 3 illustrate the 

existence of endemic equilibrium (EE) defined by the EE point, where it is observed 

that all trajectories corresponding to the populations converge to a non-zero value as 

time elapses to infinity. This implies that the disease can persist in the host in the 

absence of intervention.  

 

Graphs in Figures 4, 5 and 6 illustrate that the basic reproduction number, 
0R   

increases as the replication rate of the virus,  ; infection rate,   and production rate 

of uninfected target cells,   increase respectively and vice versa. Biologically, this 

means the EBOV infection prevails whenever the values of  ,   and   are 

increased. On the other hand, Figures 7 and 8 illustrate that 
0R  decreases with 

increase in the natural death rate of the virus,   and natural death rate of target cells, 

  respectively and vice versa. This implies   and   reduce the spread of infection 

whenever their values are increased. 

 

Graphs in Figures 9 and 10 still show that 
0R  increases as the values of  ,   and   

increase; but as they increase infinitely, 
0R  increases drastically due to double 

effects. On the other hand, plots in Figures 11 and 12 show that as   and   increase 

0R  decreases and it increases as   increases. But, one important information 

portrayed in Figures 11 and 12 is that   and   mostly influence 
0R  as they increase 

substantially. This means the effect of   on 
0R  is immaterial at higher values of   

and  . Consequently, the parameter for the infection rate,  , being the most 

sensitive one, can be employed to decrease 
0R . Decreasing   will decrease 

0R  as 

well. (Figures 9, 10, 11 and 12). Absolutely, this will reduce the spread of infection 

in vivo. 
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CONCLUSION AND RECOMMENDATIONS 

 

This paper presents a deterministic mathematical model proposed to investigate the 

dynamics of EBOV. A detailed analysis of the model was implemented to determine 

the invariant region and establish positivity of the solutions set of the model system; 

obtain equilibrium points, basic reproduction number, 
0R . Global stability analysis 

of the equilibrium points and sensitivity analysis of the model parameters rooted in 

0R  were implemented. Numerical simulations were done to portray existence of the 

model equilibria and variations of 
0R  with respect to the model parameters linked to 

0R . Based on the analytical results and observations, it was shown that the model is 

mathematically and biologically well posed, which implies that the model can be 

used to effectively investigate the dynamics of EBOV in vivo. The results also 

showed that the disease-free and endemic equilibrium points are globally 

asymptotically stable, suggesting that strategic control measures can be taken to 

eradicate the disease. The sensitivity indices of the model parameters imbedded in 

0R  portrayed that the parameters for the infection rate, production rate of uninfected 

target cells and virus replication rate are positively sensitive while the parameters for 

natural death rate of target cells and the natural death rate of the virus are negatively 

sensitive. It is further shown that the parameter for the infection rate is the most 

sensitive one whereas the parameter for the virus replication rate is the least sensitive 

one. This implies that the parameter for the infection rate is highly influential to 
0R  

while the virus replication rate is slightly influential to 
0R . This further implies that 

decreasing the value of infection rate will significantly decrease the value of 
0R  and 

so the number of secondary infections will decrease enormously. Consequently, the 

most influential parameters can be considered for the disease control. The results 

suggest implementation of deliberate control measures to eradicate EBOV disease by 

considering sites in the model to which the most sensitive parameters are affiliated. 
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