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ABSTRACT
 
 The fully developed mixed convection of couple stress fluid in a vertical channel in the presence of heat 
generation or absorption is analyzed. The two boundaries of the channel are considered as isothermal-
isothermal, isoflux-isothermal and isothermal-isoflux for the left and right walls and kept either at equal 
or at different temperatures. The governing momentum and energy equations are coupled and non linear 
due to the viscous effects. The velocity field and the temperature field is obtained by perturbation series 
method which employs a perturbation parameter proportional to the Brinkman number. In addition, closed 
form expressions for reversal flow conditions at both the left-right channel walls are derived. The results 
are represented graphically for different values of perturbation parameter and couple stress parameter   on 
velocity and temperature distributions.  We observe that for purely viscous fluid   the flow reversal was at 
the hot wall whereas for couple stress fluid there is a flow reversal both at left and right walls. The effect of 
the perturbation parameter on the flow for couple stress fluid is dominating compare to viscous fluid both on 
velocity and temperature. The profiles of temperature are significant for couple stress fluid for different values 
of perturbation parameter whereas the profiles were not sensible for same values for viscous fluid. 
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Studies on natural convection in a vertical channel 

with non-Newtonian fluid are relatively sparse 

compared to the problem with Newtonian fluid. 

The effect of couple stresses on peristaltic transport 

has been carried out by (Srivstava, 1986) and 

(Shehaway and Mecheimer, 1994). However, 

the natural convection flow and heat transfer in a 

vertical channel with couple stress fluid has not 

been studied so far even though the couple stress 

fluid is one of the simple and interesting models 

of fluid belonging to the class of non-Newtonian 

fluids. The theory of (Stokes, 1966) is simplest 

generalization of the classical theory of fluids, 

INTRODUCTION

The study of non-Newtonian fluids has received much 

attention due to their many practical applications in 

medical sciences, engineering and technology, such 

as liquid crystals, fluid film lubrication etc. In the 

category of non-Newtonian fluids, couple stress fluid 

has distinct features such as polar effects in addition 

to possessing large viscosity. The consideration of 

couple stress in addition to Cauchy stress has led to 

the recent development of several theories of fluid 

micro-continua.
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which allows for polar effects such as the presence 

of a non-Newtonian symmetric stress tensor, couple 

stresses and body couples. Couple stresses may 

appear in the flow of liquids that contain additives. 

The couple stress fluid model has wide applications 

in bio-fluids, colloidal fluids and in engineering for 

pumping fluids such as synthetic lubricants. Studies 

on natural convection in a vertical channel with non-

Newtonian fluid are relatively sparse compared to 

the problem with Newtonian fluid. Malashetty and 

Umavathi (1999) analyzed the effects of couple 

stresses on free convective flow in a vertical channel 

and Umavathi (2000) analyzed the free convection 

flow of electrically conducting couple stress fluid 

in a vertical channel. Umavathi et al. (2004) also 

carried out the convective flow of two immiscible 

viscous and couple stress fluids through a vertical 

channel in the absence of viscous dissipation.  

The theoretical investigations on fully developed 

mixed convection in vertical or inclined ducts are 

often devoted to a description of the changes on the 

velocity profiles induced by buoyancy as well as to 

the determination of the conditions for the onset of 

flow reversal. Indeed, the flow reversal phenomenon 

arises when buoyancy forces are so strong that there 

exists a domain within the duct where the local fluid 

velocity has a direction opposite to the mean fluid 

flow. Theoretical investigations have been devoted 

to the analysis of the interplay between the effect 

of viscous dissipation and the effect of buoyancy 

forces. Barletta (1986; 1998; 1999, 1999a, 2002) 

investigated the heat transfer in vertical channel 

flow under various flow  and boundary conditions 

like presence of prescribed wall heat flux (Aung 

and Worku, 1986) , mixed convection with viscous 

dissipation (Aung and Worku, 1988; Barletta, 

1988, Srivastava ,1988), when the  boundaries are 

isothermal-isoflux (Barletta,1999), again with the 

inclusion of viscous dissipation and fully developed 

mixed convection with flow reversal  in rectangular 

duct with uniform wall heat flux (Barletta , 2002).

Cheng et al. (1990) reported flow reversal and heat 

transfer of fully developed mixed convection in 

vertical channels. (Lavine, 1988) studied the fully 

developed opposing mixed convection between 

inclined parallel plates.  Hamadah and Writz (1991) 

discussed the laminar fully developed mixed 

convection in a vertical channel with opposing 

buoyancy force. In most of the industrial applications 

we see that the working fluid is non-Newtonian in 

nature in various applications and much work has 

not been found in the literature on mixed convection 

flows. Hence, the present objective is to study the 

problem of mixed convection couple stress fluid in 

a vertical channel in the presence of heat generation 

or heat absorption.

MATHEMATICAL FORMULATION

Consider steady, laminar, fully developed flow in a 

parallel plate vertical channel.

Cartesian coordinate system is chosen with the 

transverse coordinate Y and the coordinate in the 
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direction parallel to the walls is X.  The origin of the axes is such that the channel walls are at position Y=-

L/2   and   Y=L/2.   The thermal conductivity, the dynamic viscosity and the thermal expansion coefficient 

are considered as constant.

The condition of fully developed flow implies that   .0)( =
∂
∂

X
U  

 Then, since  the velocity field  U is solenoid , one obtains  0)( =
∂
∂

Y
V

.

As a consequence, the velocity V is constant in any channel section and is equal to zero  at the channel 
walls, so that  V must be vanishing  at any position.

 The oberbeck-Boussinesq approximation is assumed to hold good for the evaluation of the 
gravitational body force, which is typical in this type of buoyancy driven flows in which the density will 
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depend on temperature according to the equation of state

 ( )( )0 01 T Tρ ρ β= − − .                                                                  (1)

The momentum balance equation for couple stress fluid is Stokes (1966).

 ( ) 0
dY

Ud
dY

Ud
X
P1TTg 4

4
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0 =−+

∂
∂

−−
ρ
η

ρ
µ

ρ
β       (2)

The Y-momentum balance equation can be expressed as 

0
Y
P

=
∂
∂          (3)

where XgpP 0ρ+=  is the difference between the pressure and the hydrostatic pressure. The temperature 

is 1T , at the left wall 2LY /−=  and the temperature is 2T , at the right wall Y= L/2  with 12 TT ≥ . These 

conditions are compatible with equation (2) only when dXdP / is independent of X . Hence, there exists a 

constant A  such that, 

A
dX
dP

=                                    (4)

Solving the equations (2) and (4), we obtain

0
X
T

=
∂
∂

,
                                  (5)                       

which implies that the temperature also depends on Y . By considering the effects of viscous 

dissipation, along with heat generation or absorption, the energy balance equation relevant to the present 

situation is
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Simplifying the equations (2) and (6) allow one to obtain a non-linear differential equation for U , in the form 
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βρµ
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=

  (7)

The boundary conditions on U are both the no slip conditions 

 0
dY

UdU 2

2

== at
2
LY ±=               (8)
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The following quantities are employed for writing equations (6) to (9) in the dimensionless form:

;;;; 2

3
0

0

DTgGr
D
Yy

T
TT

U
Uu

ν
∆β

∆
θ ==

−
==

 Re
Gr

=λ ;

T
TTR 12

T ∆
−

= ;
K

QD
TK

U
Br

DU 22
00 ==== φ

∆
µ

α
ν

ν
;;Pr;Re               (10)

        k=
D2µ
η ; a2 =

k
1 ,                                                                  where D=2L, is the hydraulic 

parameter. 

The reference velocity 0U  and the reference temperature 0T  are,

  2
TTT

48
ADU 21

0

2

0
+

=−= ;
µ

      (11)

The temperature difference T∆  is given by 

 12 TTT −=∆  if 21 TT <      or     by 

 2
p DC

2

T ν∆ = if 21 TT =                                                                       (12)
The dimensionless form of equations (6) to (9) are as follows,
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2

aRa48
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ud 2
T2

4

4 λ
+= at y=  l/4.                              (16)

Temperature field can also be obtained while substituting equations (10) and (11) in momentum equation (2) 
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one obtains, 
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22
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ud
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θ  .                                   (17)

Equation (14) is highly nonlinear through viscous dissipation term. If the viscous dissipation is 

negligible so that 0Br = , the dimensionless temperature θ  and dimensionless velocity u  are uncoupled. In 
this case, the solution of equation (14) by applying the boundary conditions (15) and (16) becomes











+

+
+






 −−−−=

4Sinha
Sinhay

4Sin
ySina

a2
R

4Cosha
Coshay1

a
48y24yR2

2
3u

2

2
T

2
2T

//)(/ φφ
φ

φ
λ

φ
λ

for the case of heat 
generation and     (18)











+

−
+






 −−−+=

4Sinha
Sinhay

4Sinh
ySinha

a2
R

4Cosha
Coshay1

a
48y24yR2

2
3u

2

2
T

2
2T

//)(/ φφ
φ

φ
λ

φ
λ

    
 (19)
for the case of heat absorption.
 The corresponding temperature field for these two cases can be obtained by substituting the expressions (18) 
and (19) in equation (17). 

4Sin
ySin

2
RT

/φ
φ

θ =     (20)

4Sinh
ySinh

2
RT
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φ

θ =  .                                                                    (21)
          In the absence of couple stress parameter i.e. 0a =  the velocity field becomes,
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for the case of heat generation and 
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for the case of heat absorption, and the temperature field is similar to the above expressions (20) and (21). 

 In the absence of couple stress parameter a and the heat generation or absorption coefficientφ , the 
velocity and temperature fields reduces to,
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 yR2 T=θ     (25)
which corresponds to the velocity and temperature fields determined by (Aung and Worku, 1986).

In the case of asymmetric heating, when buoyancy forces are dominated i.e.,

when ∞±→λ , equations (18) and (19)  for the cases of heat generation or absorption gives 
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In the absence of couple stress parameter the above equations become,
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In the absence of source and sink, the above equations for clear viscous fluid reduces to
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which is Batchelor’s velocity field for free convection (Batchelor, 1954).  

 When buoyancy forces are negligible and viscous dissipation is relevant, i.e. 0=λ , so that a purely 
forced convection occurs. For this condition, the solutions of velocity and temperature are obtained from 
equations (13) and (14) as, 
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for the case of heat absorption.  
         Solutions of equations (13) and (14) for clear viscous fluid in the absence of buoyancy force, viscous 
dissipation and source and sink leads to the Hagen-Poiseuille velocity profile 







 −= 2

16
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                                                (34)
and temperature profile is given by

4
Br3yR2yBr192 T

4 ++−=θ
    (35)
which agree with the results obtained by (Cheng and Wu, 1976) in the case of forced convection with 
asymmetric heating.

Solutions
 

The solution of nonlinear differential equation (13) can be simplified by employing a perturbation technique

pC
Dg

PrReBr
β

=λ=ε

    (36)
 The temperature field is obtained in terms of velocity from the equation(17). The solution of equation 
(14) using (36) is.
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   The second and higher order terms of ε give a correction to 0,0 θu  accounting for the viscous dissipation 
effect. 

Isothermal-isothermal )TT( 21 − walls 
 In this case both the walls are maintained at different temperatures.
Substituting equation (37) in equation (14) and equating the coefficients of like powers of ε  to zero; one 

obtains the boundary value problem for 0n =  and 1n =  as, 
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 for the case of heat generation and absorption respectively. The boundary conditions of 0u and 1u  by using 
the equation (37) simplify to 
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Equation (38) is ordinary linear differential equation and hence the exact solution can be solved easily. The 

solution of equation (38) obviously coincides with the solution of equation (14) in the case of 0Br = .  

Evaluation of the exact solution for 2n =  becomes tedious and hence neglecting the terms for 2n = , zeroth 
and first order solutions are 
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for the  case of heat absorption. The solution of equation (39) by using the equation (41) for 1n =  is
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for the  case of heat generation and         
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for the  case of heat absorption. The dimensionless temperature field is obtained from equation (17) considering 
velocity fields defined as in equations (42) to (46) is
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for the  case of heat generation and
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or the  case of heat absorption.

Isoflux-isothermal )Tq( 21 −  walls
In this case the left wall is maintained with a constant heat flux and the right wall is at a uniform 
temperature. The thermal boundary condition for the channel walls can be written in the dimensional form 
as

 
dY
dTKq1 −= at

2
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2
LY =                            (48)

  
It is convenient to non-dimensional the thermal boundary conditions by employing the equation (10) with 
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TTTR 02qt ∆/)( −=  is the thermal ratio parameter. Differentiating the equation (2) with respect toY , we get 
the boundary condition of velocity field in dimensional form as,
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Equation (50) is non-dimensional zed by applying the equation. (10) to give
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Evaluating the equation (51) at the left wall )4/1( −=y  yields 
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  The other boundary condition at the right wall can be shown to be the same as that given for the 

isothermal-isothermal case with TR  replaced by qtR  such that
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The integrating constants in equations (42) to (47)are obtained using boundary conditions (52), (53) along 
with (40) and (41).  

Isothermal-isoflux )qT( 21 −  walls
Here, the left wall is kept at a uniform temperature while the right wall is maintained at  a uniform heat flux. 
The thermal boundary condition for the channel walls can be written in the dimensional form as,
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dY
dTKq2 −= at

2
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2
YY −=                  (54)

The dimensionless form of the equation (54) can be obtained by using the equation (10) with KDqT 2 /=∆
to give
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where TTTR 01tq ∆/)( −=  is the thermal ratio parameter for the isothermal-isoflux case. Similar to the 
procedure done in the previous case on isoflux-isothermal walls, the dimensionless form of the boundary 
conditions obtained from equation (2) and applying equation (55) can be written as
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  The other boundary condition at the right wall can be shown to be the same as that given for the 

isothermal-isothermal case with TR  replaced by tqR  such that
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Using these boundary conditions, the integrating constants are obtained from equations (43) to (46) and (52) 

up to ( )1εO .  

RESULTS AND DISCUSSION

The theory of couple stress fluid due to Stokes is used to formulate a set of boundary layer equations for a 

flow of incompressible, couple stress fluid in a vertical channel for mixed convection. Analytical solutions 

are obtained using perturbation technique valid for small value of ε . Figures 1 and 2 show the effect of ε for

500±=λ . When the flow is upward, ε  and λ  are positive and on the other hand, the flow is downward when 

the ε  and λ  are negative. It is very interesting to note that there is a flow reversal at both the boundaries for λ  

positive, which is different from the result for viscous fluid where there is a flow reversal for positive λ  only 

at cool wall. The phenomena of flow reversal is typical in buoyancy driven flows We observe that for purely 

viscous fluid for 500−=λ the flow reversal was at the hot wall whereas for couple stress fluid there is a flow 

reversal both at left and right walls. The effect of ε  on the flow for couple stress fluid is dominating compare 

to viscous fluid both on velocity and temperature. The profile of temperature are significant for couple stress 

fluid for different ε where as the profiles were not sensible for differentε . 
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 Figures 3 and 4 show the effect of heat generation coefficient φ  on velocity and temperature. For both 

positive and negative values of λ , the flow suppresses as φ  increases, which is opposite, result for viscous 

fluid. Figures 5 and 6 show the effect of couple stress parameter on the flow. For positive λ  as ''a  increases 

velocity increases and it is notified that the maximum velocity occurs at both left and right walls for small ''a  

and the maximum velocity is in the middle of the channel for large ''a and also flow reversal occurs as ''a  

increases. For negative λ  velocity decreases as ''a  increases and here also the maximum velocity is at both 

the walls for small ''a  and moves to the middle of channels as ''a  increases. The temperature decreases as ''a  

for both positive and negative λ . It is also noticed that for small values of ε  the effect of ''a  is insignificant 

for upward and downward flows.  

Figures 7 illustrate the influence of couple stress parameter ''a  with isoflux-isothermal and isothermal-isoflux 

wall conditions for 1.0,500 ±=±= ελ and 1== tqqt RR . It is seen that as ''a  increases the flow is assisted for 

positive λ  and suppresses for negative λ  at the reversal side. Also, as ''a  increases temperature decreases 

for both ε± . The effect of ''a  on velocity and temperature for isoflux-isothermal case is similar to that for 

isothermal-isoflux wall conditions as seen in Figure 7. 
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Fig. 1 Plots of u versus y in the case of asymmetric heating for different values of λ and ε 
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Fig.. 2 Plots of θ versus y in the case of asymmetric heating for different values of λ and ε 

 

 

λ = 500
λ = -500
Rt = 1
φ = 5
a = 4

 ε = -8

 ε = 8

 ε = 0.1, -0.1

 ε = 0

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

-0.2 -0.1 0.0 0.1 0.2

-8

-6

-4

-2

0

2

4

6

8

10

12

 ε = 0, 0.1, -0.1

φ = 10, ε = -8

φ = 5, ε = -8

φ = 10, ε = 8

φ = 5, ε = 8

u

y
Fig. 3 Plots of u versus y in the case of asymmetric heating
           for different values of heat generation coefficient φ and ε 
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Fig. 5 Plots of u versus y in the case of asymmetric heating
           for different values of couple stress parameter a  
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Fig. 6 Plots of θ versus y in the case of asymmetric heating
           for different values of couple stress parameter a  
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Nomenclature

A         Constant defined in equation (4)
Cp specific heat at constant pressure
D          = 2L, hydraulic parameter 
g  acceleration due to gravity

λ  dimensionless parameter  (Gr/Re) defined in equation (10)

Gr  Grashof number defined in equation (10)

Br     Brinkman number defined in equation (10)

K  thermal conductivity

k non-dimensional material parameter
a    couple  stress parameter as defined in equation (10)
L channel width
η        cross Viscosity
p  pressure

P  = p  + gXoρ , difference between the pressure and the hydrostatic pressure

Re  Reynolds number  defined in equation (10)

TR  temperature difference ratio  defined in equation (10)
T  temperature 

21 , TT  prescribed boundary temperatures 

oT  reference temperature 
u  dimensionless velocity component in the X- direction

U  velocity component in the X-direction

0U  reference velocity 
V velocity component in the Y-direction

YX ,  space coordinates
y dimensionless transverse coordinate

Greek symbols

pC
k

0ρ
α = , thermal diffusivity

β  thermal  expansion coefficient
  

T∆  reference temperature difference  defined by equation (12)

θ  dimensionless temperature defined in equation (10)
µ  dynamic viscosity

0ρ
µν = , kinematic viscosity
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