
Applicability of Artificial Neural Network for Automatic Crop Type Classification on 

UAV-Based Images 

 

*Ajayi O. G., Opaluwa Y. D., Ashi J. & Zikirullahi W. M. 

Department of Surveying and Geoinformatics, Federal University of Technology, Minna 

*Corresponding author: ogbajayi@gmail.com, gbenga.ajayi@futminna.edu.ng 

ORCID*: http://orcid.org/0000-0002-9467-3569 

 

Received: 23/6/2022    Revised: 19/7/2022     Accepted: 02/8/2022 

__________________________________________________________________________ 

Recent advances in optical remote sensing, especially with the development of machine 

learning models have made it possible to automatically classify different crop types based on 

their unique spectral characteristics. In this article, a simple feed-forward artificial neural 

network (ANN) was implemented for the automatic classification of various crop types. A 

DJI Mavic air drone was used to simultaneously collect about 549 images of a mixed-crop 

farmland belonging to Federal University of Technology Minna, Nigeria. The images were 

annotated and the ANN algorithm was implemented using custom-designed Python 

programming scripts with libraries such as NumPy, Label box, and Segmentation Mask, for 

the classification. The algorithm was designed to automatically classify maize, rice, soya 

beans, groundnut, yam and a non-crop feature into different land spectral classes. The model 

training performance, using 70% of the dataset, shows that the loss curve flattened down 

with minimal over-fitting, showing that the model was improving as it trained. Finally, the 

accuracy of the automatic crop-type classification was evaluated with the aid of the recorded 

loss function and confusion matrix, and the result shows that the implemented ANN gave an 

overall training classification accuracy of 87.7% from the model and an overall accuracy of 

0.9393 as computed from the confusion matrix, which attests to the robustness of ANN 

when implemented on high-resolution image data for automatic classification of crop types 

in a mixed farmland. The overall accuracy, including the user accuracy, proved that only a 

few images were incorrectly classified, which demonstrated that the errors of omission and 

commission were minimal.  

 

Keywords: Artificial Neural Network (ANN), automatic crop-type classification, image 
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INTRODUCTION 

The basic distinction between vegetated 

and non-vegetated regions, or woodland 

and open fields, is vegetation 

classification (Timalsina et al., 2021). In 

certain cases, such distinctions can be 

quite important, especially when data is 

pooled across broad areas or monitored 

over lengthy periods of time. An 

ecosystem of plant is a group of plants 

that have joint interdependencies with 

one another and with their surroundings 

(Horn et al., 2017). Crop classification is 

by far the most essential aspect of the 

vegetation classification because in 

several settings, agricultural crops are 

frequently inspected and cultivated in 

regular regional fields with a specific 

crop per field (Mengist, 2019).  

In precision agriculture, remote sensing 

techniques integrated with machine 

learning algorithms can be used in the 

classification of several classes of crops 

(Mekonnen et al., 2019). It has the 

potential to be significantly faster, more 

precise, and hence, less expensive than 

traditional approaches for estimating 

regional crop area (Nitze et al., 2012). 

Crop type data at the field level can be 

utilized for agricultural surveys, subsidy 
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control, or as a supplement to crop yield 

forecasting and shortages. Crop 

classification is determined by a crop's 

spectral response pattern and image 

texture pertaining to a particular crop 

(Murmu & Biswas, 2015). For correct 

crop identification, it is vital to 

understand the phases of growth of each 

crop because crop properties fluctuate 

throughout the growing season (Pang et 

al., 2020), hence, satellite images taken at 

various times throughout the growth 

cycle are frequently useful (Seelan et al., 

2003).  

The concept of artificial intelligence in 

image classification and automatic 

feature identification and extraction is 

developing and becoming an important 

method in a variety of disciplines 

(Fielding & Zhang, 2018; Ajayi & 

Oruma, 2022; Ajayi & Ojima, 2022). 

Without this technique, the notion of 

human anatomy and the digital approach 

to monitoring human interior structures is 

becoming unachievable in the medical 

industry. In remote sensing, image 

classification is a strategy of categorizing 

diverse picture components into several 

geographical spectral classes belonging 

to the same class (Li et al., 2014). This is 

a technique of image processing that 

entails classifying and segmenting 

multiple visual parts with comparable 

attributes (Wisniewski & Schowengerdt, 

2005). Because of the success of a 

number of commercial applications that 

utilizes this technology, Artificial Neural 

Networks (ANN) and other machine 

learning methodologies have garnered 

considerable attention. Consequently, 

relatively robust open source frameworks 

and solutions have been established, 

bringing this technology to the attention 

of ordinary developers and users (Sootla 

& Matiisen, 2015).  

 

LITERATURE REVIEW 

Remote sensing relies heavily on image 

classification (Cui et al., 2015; Xu et al., 

2016; Liu et al., 2018; Pham et al., 2018) 

which results in the production of 

thematic maps. The method of making 

thematic maps using satellite images is 

known as thematic mapping (Foody, 

2002). A thematic map is a data-driven 

visual representation that depicts the 

spatial distribution of a certain subject 

(Hamzah, 2015). Vegetation types, such 

as trees, crops, and grasslands, are 

examples of themes. Within a subject, 

finer sub-themes can be created to refine 

the classification process, such as 

identifying trees as deciduous or 

evergreen. To classify images, spectral 

discreteness of categories/classes or 

spectro-temporal variation is generally 

utilized (Ashish et al., 2009).  

The majority of land-use intensity 

classifications have a specific distribution 

which is used to generate spectral 

classifications based on image 

categorization. Within a given 

geographical range, the spatiotemporal 

configuration of these reflectance values 

might reveal important information 

towards categorizing the images (Fung & 

Chan, 1994). The texture information in a 

picture may also be used to classify it. 

Several factors for texture identification in 

images have been presented by Maillard 

(2003), Ehsanirad & Yh (2010), Lee et al. 

(2016), Shaha and Pawar (2018) and 

Zhang et al. (2019). Some of these 

include contrast, inverted difference 

moment, correlation, entropy, etc.  

The homogeneity of the image is 

determined by the angular second 

moment. On the other hand, the degree of 

local variation contained in a picture is 

measured by contrast (Yang et al., 2012) 

while the gray-tone linear-dependencies in 

a picture are measured through correlation 

(Simonthomas et al., 2014). Also, the 

level of local similarity is measured by the 

inverse difference moment (Zhao & Qin, 

2018) while the entropy of a gray tone co-

occurrence in a picture is a measure of its 

average uncertainty (Hendrawan et al., 

2019). Image categorization and analysis 

have traditionally relied on the contrast 
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factor, the entropy factor, the angular 

second moment factor, and the inverted 

difference moment factor.  

Classification accuracy is decreased by 

higher variability (Maniruzzaman et al., 

2018; Dhingra & Kumar, 2019). The 

majority of land-use classification 

research has previously centred on 

multispectral image analysis (Tehrany et 

al., 2014; Hassan et al., 2016; Huang et 

al., 2018). Gray-scale pictures have been 

used in quite a few situations (Zauner et 

al., 2014; Kasim et al., 2017), and no 

comparisons to multispectral data 

processing have been done. Because of 

the little spectral information available in 

these pictures, accurate categorization of 

grey-scale photos into distinct land-uses 

has proved to be increasingly difficult 

(Ashish et al., 2004). Several novel 

methodologies have outperformed 

classical approaches, such as those of the 

contextual classification scheme and 

techniques centred on fuzzy sets or with 

their permutations (Blaschke et al., 

2004). Contextual classification 

algorithm enhance the level of 

complexity of information collected by 

adding extra bands once contextual 

information is available in some fashion, 

or they presume the occurrence of local 

attributes specified in such a region in 

which geographic dependency seems to 

be significant. ANNs harness the brain's 

processing to create algorithms that may 

be used to model complicated patterns 

and anticipate outcomes (Salyut & 

Kurnaz, 2018). There are billions of 

neurons in our brain that process 

information in the form of electric 

impulses.  

ANN is a computationally analytical 

model that is based on biological learning 

analogies, and mimics a few of the 

recognized properties of biological neural 

systems (Mocanu et al., 2018). It is a 

network of interrelated processing 

components which functions similarly to 

neurons (Maind & Wankar, 2014). These 

processing units are linked by connection 

weights, which are akin to 

neurotransmitters in the human cerebral 

cortex. Supervised learning is frequently 

achieved in an ANN via training or 

exposure to a typically known collection 

of set of data (Ashish et al., 2009). The 

connection weights are adjusted by the 

training algorithm in an iterative method 

that minimizes the error (Ding et al., 

2015).  

Previous researches have demonstrated 

the advantages of ANN over several 

traditional statistical approaches in a 

variety of issues, including classification 

challenges (Heng et al., 2009; Wei et al., 

2018; Ahmad et al., 2020; Zohdi et al., 

2022). It is also frequently employed 

during automatic data classification and 

segmentation, and it has been suggested 

especially for issues involving a great 

deal of data variability (Moshou, 2001; 

Mehdy et al., 2017; Mohammed et al., 

2017). Benediktsson et al. (1990) 

demonstrated the practicality of using 

ANNs to classify the land use of remotely 

sensed picture regions. The neural 

network classifier approach was 

compared with normal empirical 

classification methods (Foody & Zhang, 

2001; Galbraith et al., 2012). The per-

pixel method was described in these 

works as one of the numerous 

categorization algorithms based on ANNs 

(Agrawal & Bawane, 2015). Because the 

geographic diversity of ground 

characteristics rises as spatial resolution 

increases, the per-pixel technique is 

likewise ineffective for classifying high 

resolution pictures (Hussain et al., 2013).   

Various researchers opined that using 

ANN for image classification yields high 

level of accuracy (Tsai, 2002; Rashmi & 

Mandar, 2011; Thai et al., 2012; Mahmon 

& Ya'acob, 2014). While ANN has been 

used for the classification of different land 

features, there are significantly sparse 

evidences of its robustness in automatic 

crop type classification using Unmanned 

Aerial Vehicle (UAV) acquired images, a 

gap this study aims to fill. The purpose of 
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this study is to build and train an artificial 

neural network that can classify various 

crop varieties in a mixed farm from UAV 

acquired images with a view to achieving 

a potentially much faster, more accurate 

and therefore, more cost effective means 

of classification than the conventional 

methods of generating regional crop area 

estimates. 

 

MATERIALS AND METHODS 

The study area adopted for this study is 

the agricultural mixed farmland 

belonging to the Federal University of 

Technology Minna, located at Garatu 

area of Minna in Niger State. It covers an 

area of 21 hectares and it is 

geographically located between Lon: 

6025’22.4”, Lat: 9032’3.8” and Lon: 240 

17’59.8”, Lat: 908’29.8”. The plots are 

mainly composed of loamy soil, and 

cultivation is done only in the raining 

season, and with mixed cultivation 

practices. A geographic description of the 

study area is presented in Figure 1. 

 

 
Figure 1: Study area 

 

Data Collection 

Spatial coordinates of the ground control 

points were collected with the aid of two 

(2) differential global positioning system 

(DGPS) receivers. The ground truth data 

(spatial coordinates) acquired with the 

DGPS receivers to measure the centre of 

the pre-marked Ground Control Point 

(GCP) markers were utilized as reference 

data for the UAV acquired images. About 

549 overlapping image pairs of the 
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farmland were captured using a DJI 

Mavic air drone on 20th June 2019. This 

UAV is a plastic built vertical take-off 

and landing vehicle. To start the UAV's 

propellers and initiate take-offs and 

landings, a remote control was utilized. 

The remainder of the trip was conducted 

using the GPS waypoints for autonomous 

navigation. The drone is equipped with a 

battery capacity of 2970mAh, and a Red 

Green Blue (RGB) sensor with a 4:3 4056 

x 3040 and 16:9 4056 x 2280 (12MP) 

pixel detector, and it was deployed at a 

height of 60 meters above ground level, 

with an angular FOV of 850 which gave 

0.019 m•pixel-1 resolution (DJI Mavic 

Air, 2022). The classification was 

performed on the 549 acquired and 

annotated image pairs. Figure 2 shows the 

workflow describing the step-by-step 

procedure adopted in the development of 

the automatic crop type classification 

scheme. 

 

 
Figure 2: An overview of the methodological workflow 

 

Data Processing 

Hp elitebook Intel Core i5-432OU, 

central processing unit of 2.0GHz, 8GB 

RAM with 64 bit Operating System and 

along with the following software 

packages; Python programming, NumPy, 

Label box, and Segmentation Mask, were 

used. The network took an average of 

223 minutes to complete the 

computation. One ROI file was used to 

train the system, while the other served as 

a testing dataset. Out of the 549 

annotated photos, the neural network was 

trained using 70% of the data, and the 

network was tested with the remaining 

30%. 

In order to automatically classify the crop 

types using ANN, the photos were loaded 

sequentially from the file directory. After 

that, the file was extracted to obtain a list 

of all image file names, which was 

followed by its importation into the Keras 

library. Keras is a deep learning API for 

creating neural networks at a high level. 

It was used to make the implementation 

of the neural network easy. To make the 

whole image vector and picture ID 64 by 

64 in size, a target size vector was set. 

This was done because, with the 

exception of vectors, neural networks 

function with multi-dimensional arrays. 

There were a total number of 549 images 

by 4096 columns. After that, label 

encoding was employed to transform 

images to numbers, which were then 

translated into classes. The classes were 

subsequently converted to columns using 

one-hot encoding. 

Six different classes were labelled using 

RGB segmentation masks with label 

boxes in this segment. It labelled the 

classes with each of them, as well as their 

segmentation, and then used an image 

segmentation mask to segment each type 

of crop on every single image. After 

building the network, the entire dataset 

was grouped into two (2) selected sample 

classes; the training sample and the test 

sample. The training sample was then 

utilized to train the network which 
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subjected it to a learning process, while 

the test sample was used to assess the 

classifier's accuracy. Various methods, 

such as the hold-out technique, cross 

validation, and random sampling and so 

on can be used to divide or group a data 

set. For this study, cross-validation which 

is a data resampling technique that is used 

to evaluate the generalization capabilities 

of prediction models and to avoid over-

fitting was deployed. The learning phases 

of a neural network are described as 

follows: 

1. The input, output, and hidden layer 

networks were specified by a set number 

of nodes. 

2. For the learning process, a simple feed-

forward neural network method was 

utilized because it does not require a 

user-specified problem-solving 

technique (as seems to be the case 

with classical coding) and would 

instead "learn" from examples in the 

same way that people do. It also has a 

natural propensity to generalize. This 

implies that it is capable of 

recognizing and responding 

appropriately to sequences that are 

comparable but not identical to those 

it has already been taught to detect 

(Benardos & Vosniakos, 2007). 

During the neural network's training, the 

recorded error was initially analyzed and 

the weights were modified accordingly. 

Gradient descent and back propagation 

techniques were used to change the 

weights. To discover the direction and 

rate at which the parameters should be 

updated, gradient descent method was 

used. For the weights and bias 

parameters, the neural network class 

creates randomized start values. Although 

the weights and bias for a single data 

sample have indeed been adjusted, the 

aim is for the network to generalize over 

the whole set of data. ADALINE, 

otherwise known as stochastic gradient 

descent, is a method in which the model 

makes a projection based on randomly 

selecting a piece of training data, 

evaluates the error, and then adjusts the 

variables at each iteration. 

In the neural network, both the weights 

and the bias vectors need are supposed to 

be updated. Because the weights and bias 

are independent variables on which the 

function used to measure the error is 

based, they may be changed and adjusted 

to get the desired outcome. The network 

that was built includes four layers, and 

each layer does have its own set of 

functions, hence the network is 

interacting with function composition. 

This indicates that perhaps the error 

function remains np.square(x), however x 

has now become the outcome of a 

different function, so that the derivatives 

of the said error with respect to weights 

must be computed.  

Error Estimation and Accuracy 

Assessment 

The cost function, also known as the loss 

function, was used to calculate the error. 

The Mean Square Error (MSE) cost 

function was employed as a function for 

this study. The MSE was computed by 

first calculating the distinction between 

the target and thus the predictions, and 

then multiplying the outcome by itself. 

There is possibility that the network may 

produce the wrong decision by providing 

a value larger or lesser than that of the 

real number. The MSE provides a 

positive number in the end because it is 

the squared difference of both the 

forecast as well as actual outcome. 

The confusion matrix was used to assess 

the accuracy of the categorization 

findings which is typically used in 

machine learning. The total error matrix 

(Table 1) is represented by the full 

confusion matrix, which is the 

combination of all classes with each other 

using the peer-to-peer approach, 

including all commission and omission 

errors for each class. The overall 

accuracy was first determined through 

adding the numbers of properly 

categorized crops by the sum total of crop 

values.  
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RESULTS AND DISCUSSION 

The images were classified into five (5) 

classes of various crops such as maize, 

rice, beans, groundnut, yam and one (1) 

non-crop class. Few samples of the 

images are presented in the merged block 

of images shown in Figure 3. As at the 

time the aerial imageries were acquired, 

the farm had already been weeded. 

On previously unknown data, the 

resultant artificial neural network had an 

accuracy of 87.7% after implementing all 

of the previously stated features. The 

neural network was trained using a 

learning rate of 0.001 and a momentum 

of 0 for 30 time steps (which is the 

amount of instances the complete dataset 

was passed through the network) and a 

batch size of 20 (the number of inputs 

which were delivered through the 

network just before weights were 

modified). The algorithm ended up taking 

the network 3hours 43 minutes to 

complete the entire training process. 

Furthermore, the model predicted and 

categorised the majority of the images 

based on their labels, and there is a 

predicted chance that the image belongs 

to that specific class for each label and 

class. 

 

 
Figure 3: Image block consisting of samples of the different classes (a) The image 

comprises of maize and rice. (b) The image consist of beans crops. (c) The image 

consists of maize crops. (d) The image consists of partly maize crops and bare ground. 

(e) Consist of groundnuts. (f) Consist of maize and rice crops 
 

The neural network has six levels; a 

single input and output layer, and four 

layers that are hidden, which represent 

different types of data sets. Figure 4 

shows a graph of cumulative error for 

each of the four hidden layers, each with 

100 neurons. In a nutshell, a randomized 

instance was chosen from the dataset, 

appropriate gradient was computed, as 

well as the weights and bias were 

subsequently modified. At every 100 

iterations, the cumulative error was 

calculated and the results were stored in 

an array. The array was used to show 

how the error changed over time during 

training.   

The graph in Figure 4 was created in the 

same directory as the IPython process of 

(a) (b) 

(e) (d) 

(c) 

(f) 
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which the process completes a list of all 

the attributes defined for deep learning. 

Following the highest decline, the error 

rapidly increases and decreases from one 

iteration to the next. Figure 4 presents a 

graph depicting the training error for a 

neural network instance. From the graph, 

it can be seen that the overall error is 

decreasing consistently as it goes down 

the iterations, even when it appears to be 

sinusoidal in nature. The training error 

peaked at the beginning of the iteration 

(greater than 3.75) but closed up to less 

than 1.0 at the end. This means that the 

network was able to extract features 

reliably. 

 

 
Figure 4: Cumulative training error over different iterations 

 

Table 1 presents a confusion matrix 

depicting the accuracy of the automatic 

crop type classification. Column 1 of the 

table shows that there was only one 

groundnut sample in the entire dataset 

and the model correctly classified it as 

groundnut, which is a true positive. Also, 

the second column shows that 131 

images were accurately classified as 

maize, which is also a true positive, 4 

images were misclassified as rice, 1 

misclassified as yam, and 2 images 

misclassified as bare ground, which are 

all false negatives. The algorithm 

accurately classified 10 images as rice 

and 2 images as maize (true positive). No 

image of soya beans was misclassified 

(true positive), six images were 

accurately classified as yam (true 

positive), and one image was 

misclassified as maize (false negative). 

There were no misclassifications in the 

five images that were correctly identified 

as barren ground (true positive).  
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Table 1: Confusion matrix of classified images 

 

The automatic classification of the crop 

types using ANN provided a positive 

result, recognizing the majority of the 

crops while misclassifying a few, 

indicating that ANN is useful for multi-

crop classification. However, if each 

class has an unequal amount of 

observations or the dataset includes well 

over two classes, classification accuracy 

itself might be deceptive or false, hence 

the need to explore other accuracy 

measures. 

Overall Accuracy 

The overall accuracy is estimated by 

adding the number of properly 

categorized crops and then dividing the 

properly categorized crops by the sum 

total of the crops. The accurately 

identified crop numbers may be found on 

the upper-left to lower-right diagonal of 

the confusion matrix. 

Hence, correctly classified values: 

1+131+10+2+6+5= 155 

Sum total number of classified crop 

values = 165 

Overall accuracy from the confusion matrix = 
155

165
 = 0.939393.      (1) 

User Accuracy 

User accuracy is the probability that an 

item projected to belong to a given class 

really belongs to that class. The 

probability is computed by simply 

dividing the total number of values 

anticipated in a class by the number of 

successfully estimated parameters. The 

user accuracy result shows that 

Groundnut, Soya beans and bare ground 

classes were perfectly classified since 

their values are 1, followed by Maize, 

Yam and Rice, respectively (see Table 2). 

 

 

 

 

 Groundnut Maize Rice Soya 

beans 

Yam Bare 

ground 

Total 

Groundnut 1 0 0 0 0 0 1 

Maize 0 131 4 0 1 2 138 

Rice 0 2 10 0 0 0 12 

Soya beans 0 0 0 2 0 0 2 

Yam 0 1 0 0 6 0 7 

Bare 

ground 

0 0 0 0 0 5 5 

Total 1 134 14 2 7 7 165 

Accuracy 

(%) 

100 97 71 100 85 71 87 
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Table 2: Estimated user accuracies 

Classes Probability 

Groundnut 1.0000 

Maize 0.9493 

Rice 0.8333 

Soya beans 1.0000 

Yam 0.8571 

Bare ground 1.0000 

 

Errors of Omission 

The proportion of values that belong to 

one class but were projected to belong to 

a different class is known as omission 

errors. They are metrics of ascertaining 

how many false negatives are there in a 

sample. Except for the values along the 

main diagonal, all omission errors are 

displayed in the confusion matrix's 

columns. Table 3 presents the error of 

omission for each of the six classes. 

 

Table 3: Estimated errors of omission 

Classes Errors of omission 

Groundnut 0 

Maize 0.0224 

Rice 0.2857 

Soya beans  0 

Yam 0.1429 

Bare ground 0.2857 

 

In Table 3, the first column (Groundnut) 

and the fourth column (Soya beans) 

yielded zero error of omission meaning 

there exist no omission error, followed by 

the second column (maize) with 0.022 

error of omission, then columns five, 

three and six, in that order. This means 

that the classifier marked 2 points 

accurately (Groundnut and soya beans) 

and the class was actually correct.  

 

 

Errors of Commission 

The proportion of values that were 

anticipated to be in a class but are not 

really in that class is referred to as errors 

of commission. They are a measure of 

calculating how many false positives 

there are. Except for the diagonal values, 

commission errors are displayed in the 

rows of confusion matrix table. 

Computed errors of commission for each 

of the six classes are presented in Table 

4. 

 

Table 4: Estimated errors of commission 

Classes Errors of commission 

Groundnut 0.0000 

Maize 0.0507 

Rice 0.0667 

Soya beans 0.0000 

Yam 0.1429 

Bare ground 0.0000 
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The loss curve, also known as the log loss 

in Figure 5 displays the model's aim of 

decreasing the loss by assessing the 

performance of a classification model 

with a probability value output between 0 

and 1. The goal of the training technique 

was to achieve minimal feasible loss. By 

dividing this same numbers of accurate 

training instances by the numbers of 

wrong training examples, the loss was 

calculated. Or, in the event of regression 

issues, how close it came to getting the 

right answer. Given a true observation 

(isDog = 1), the graph in Figure 5 depicts 

the range of probable loss levels (vertical 

plane) and the numbers of epochs on the 

horizontal plane. Log loss diminishes as 

the estimated probability approaches 1. 

The log loss, on the other hand, rapidly 

grows when the expected probability 

lowers. The loss curves were smoothing 

out, showing that the model was 

becoming better as it learned. Because 

the test loss and training loss are the 

same, the model does not over fit the 

training data.  

 

 
Figure 5: Cross entropy loss graph 

 

The accuracy curve in Figure 6 

demonstrates how the training and test 

accuracy differ. The training accuracy 

progressively grows while the test 

accuracy swiftly converges, according to 

the accuracy curve. The accuracy versus 

epoch curves for training and testing 

datasets finally converged towards each 

other. The vertical plane depicts the 

accuracy values on a scale of 0-1 while, 

the horizontal plane depicts the numbers 

of epochs. This also demonstrates that the 

model is not too fitted (no over-fitting).  

 

 
Figure 6: Accuracy curve of the network architecture 
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CONCLUSION 

In this study, the details of the 

development of an artificial neural 

network (ANN) based system for 

automatic crop type classification was 

presented. The algorithm did not only 

carry out training and learning of the 

dataset, but also proved to be capable of 

automatically and accurately identifying 

and classifying the specific crop type 

using UAV image data which is very 

important for agricultural or farmland 

inventory, and in precision agriculture. 

The ANN consistently provided higher 

training classification accuracy, 

indicating that it is able to accurately 

characterise different class appearances. 

An average of 87.87% general accuracy 

was recorded throughout the 

categorization, indicating general 

consistency in the classification of crops 

into the six (6) separate groups. In 

addition, an overall classification 

accuracy of 0.9393 was attained during 

the automatic classification of the crop 

types. With a lower cumulative error, the 

model correctly predicted and identified 

majority of the images, as evident in the 

classification’s confusion matrix. The 

overall accuracy, including user accuracy 

proved that only few images were 

incorrectly classified, which 

demonstrated that the errors of omission 

and commission were minimal. The loss 

curve also flattened down with minimal 

over-fitting, showing that the model was 

improving as it trained. Because the test 

loss and training loss are the same, the 

model does not over-fit the training data. 

The accuracy versus epoch curves for 

training and testing datasets finally 

converged towards each other. This also 

demonstrates that the model is not too 

fitted (no over-fitting). Further research 

effort will explore possible approaches of 

enhancing the developed artificial neural 

network. Firstly, the programs will be 

modified to make the overall 

implementation scheme more readable 

and efficient. Secondly, additional hidden 

layers will be added to the network to 

give it the abilities it needs to interpret 

increasingly complex data correlations. 

Furthermore, the applicability and 

efficiency of some other neural network 

architecture such as the convolutional 

neural network (CNN) in automatic crop 

type classification will be investigated 

and compared with the developed ANN 

model. 
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