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Abstract 

This research investigates the use of the exponential-pareto distribution to improve raw material quality in cement 

production. Experienced researchers researched on the distribution and came up with the generalised form of the 

distribution. The weight of the raw components, aluminium, calcium, gypsum, iron, and silicon, was collected from 2007 

to 2017. Using exponential pareto, average run lengths (ARL), control limit intervals (CLI), and process capability (CP) 

were calculated, and control charts were created. The investigation found that the control charts were statistically 

controlled, indicating that the distribution is effective. It was suggested that an exponential-pareto chart be used to control 

the quality of raw materials used in cement manufacture. 
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1.0 INTRODUCTION 

Control systems are used in industrial process control to 

promote consistency, economy, and safety in continuous 

production processes across many industries. Quality 

control (QC) is an essential component of quality 

management (ISO 9000:2005) and involves reviewing 

production parameters to fulfil quality standards. The 

Shewart control chart is an important instrument in 

statistical process control for assuring process stability and 

improvement (Adewara & Aako, 2020). Quality control has 

progressed from ensuring that end products fulfilled 

engineering specifications to controlling process variance 

for great goods. It entails creating and testing standards to 

assure the proper completion of products or services. 

Developing high-quality products and services is critical for 

global organizations. 

Customer expectations establish quality and have an impact 

on market position (Gbadeyan & Adeoti, 2005). Meeting 

quality requirements necessitates establishing tolerance 

limits and concentrating on obtaining high-quality raw 

materials, equipment, and labour (Orga, 2011). In project 

management, quality control is assessing completed work 

to ensure that it is in accordance with the project scope 

(Phillips & Joseph, 2008). It is a procedure for ensuring 

stability, assessing performance, and taking corrective 

actions. The feedback loop is essential in quality control and 

is relevant in a variety of industries (Juran, 2000). 

Recent research on combined distributions in quality 

control charts has focused on the creation of more robust 

and flexible strategies for dealing with varied data 

properties such as non-normality, multivariate 

dependencies, and autocorrelation. These ideas are useful 

for practitioners looking to improve process monitoring and 

control in a variety of sectors. 

Chen et al. (2019) introduced a novel control chart 

framework that models the underlying process using several 

distributions such as normal, exponential, and Weibull. The 

graphic becomes more robust and adaptable in spotting 

process anomalies and shifts by merging these distributions. 

Jafari et al. (2020) concentrated on monitoring non-standard 

process data, which is typical in real-world circumstances. 

The researchers created mixed distribution control charts, 

which use a combination of distributions such as normal, 

lognormal, and gamma to capture the many properties of the 

data and increase the identification of process fluctuations. 

Zhang et al. (2021) introduced multivariate procedures, 

which incorporate numerous quality parameters at the same 

time. This study presented joint distribution control charts, 

which use combined distributions to model the 

dependencies between numerous variables. These charts 

give a complete technique for monitoring and diagnosing 

multivariate process alterations by taking into account the 

joint behaviour of the variables. 

Alwan et al. (2022) presented autocorrelation, which is a 

prevalent feature in many processes and in which 

observations depend on past values. This paper presented 

combination phase II control charts, which combine 

autoregressive integrated moving average (ARIMA) 

models with combined distributions. By capturing both 

time-dependent patterns and distributional properties, the 

proposed method enables effective monitoring of 

autocorrelated processes. 

The research seeks to monitor the raw materials used in the 

cement production process using an exponential-pareto 

distribution model. 

 

2.0 METHODOLOGY 

Secondary data created by the company's quality control 

department for five different constituents (Aluminium, 

Calcium, Gypsum, Iron, Silicon) utilised in the production 

of cement in order to check the quality of the cement 
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produced is used for this project. The information ranges 

from 2007 to 2016. 

Exponential-Pareto Distribution 

If x has an Exponential-Pareto distribution with the scaling 

parameter, then x has a normal distribution 𝜃0
∗ = 𝜃0

1

3.6. 

The Exponential-Pareto distribution charts' control limits 

are given by 

𝑈𝐶𝐿𝑋 = 𝜇𝑥 + 𝑘𝜆𝑥         

(1) 

𝜇0 = 𝜆 (1 + 1
𝛽⁄ ) + 𝑘𝜃0√𝜆 (1 +

2
𝛽⁄ ) − 𝜆 (1 + 1

𝛽⁄ )
2

           

(2) 

𝜇0 = 𝜆 (1 + 1
𝛽⁄ ) + 𝑘√𝜆 (1 + 2

𝛽⁄ ) − 𝜆 (1 + 1
𝛽⁄ )

2

           

(3) 

=𝝁𝟎𝑪𝒖 

𝐿𝐶𝐿𝑋 = 𝜇𝑥 − 𝑘𝜆𝑥              

(4) 

𝜇0 = 𝜆 (1 + 1
𝛽⁄ ) − 𝑘𝜃0√𝜆 (1 +

2
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𝜇0 = 𝜆 (1 + 1
𝛽⁄ ) − 𝑘√𝜆 (1 + 2

𝛽⁄ ) − 𝜆 (1 + 1
𝛽⁄ )

2

            

(6) 

=𝝁𝟎𝑪𝒍 
The inner control limit for EPD mean is also given by 

𝜇0 = 𝜆 (1 + 1
𝛽⁄ ) + 𝑘2𝜃√𝜆 (1 +

2
𝛽⁄ ) − 𝜆 (1 + 1

𝛽⁄ )
2

      

(7) 

𝜇0 = 𝜆 (1 + 1
𝛽⁄ ) − 𝑘√𝜆 (1 + 2

𝛽⁄ ) − 𝜆 (1 + 1
𝛽⁄ )

2

          

(8) 

=𝝁𝟎𝑪𝒖 

In the above,𝐾1and𝐾2 (𝐾1 > 𝐾2) are control coefficients to 

be determined by considering the target in-control ARL, say 

𝑟0 

Then the average run length of the distribution is given as 

ARL=
1

1−𝑃𝑖𝑛
1      (9) 

 and the standard deviation of the average run length is 

SDRL = √
𝑃𝑖𝑛

1

[1−𝑃𝑖𝑛
1]
2    (10) 

The Average Run Length (ARL) metric is used to evaluate 

the performance of control charts, either alone or in 

conjunction with other metrics such as the Cumulative Sum 

(CUSUM) and Cumulative Poisson (CP) charts. ARL is the 

average number of in-control observations that occur before 

a change in process level or an out-of-control observation. 

In practise, ARL is frequently calculated in conjunction 

with another parameter known as the Control Limit Index 

(CLI). Higher ARL and CLI values are expected when a 

process functions consistently over time and remains 

statistically in control. When the process deviates or is 

deemed out of control, it is preferable to have lower ARL 

and CLI levels. 

The statistical software used in the analysis of this research 

work is R package. The code used in the computation is 

gotten from (Kimakova, 2021). 

3.0 RESULTS 

  

Table 1: Descriptive Analysis of the five raw materials 

S/N Statistic Aluminium Calcium Gypsum Iron Silicon 

1 N 360 360 360 360 360 

2 Mean 32.62 31.56 32.54 33.69 36.03 

3 Variance 402.69 327.83 282.04 447.14 515.93 

4 StandardDev 20.07 18.10 19.55 21.15 22.71 

5 Median 24.02 28.02 26.85 29.59 31.52 

6 Minimum  10.01 10.08 10.11 10.11 10.09 

7 Maximum  97.26 99.23 98.51 98.51 99.23 

8 Range  87.25 89.15 88.40 88.40 89.14 

9 Skewness 1.0931 1.0472 1.0718 1.0309 0.9619 

10 Kurtosis 0.6907 0.9222 0.7854 0.4944 0.1803 
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11 Standard Err. 20.0663 18.1060 16.7940 21.1455 22.7140 

Sources: Researchers Analysis Output, 2022 

 

The analysis of this study is triple for each constituent (table 1) and the various statistics for each is as presented above. 

Table 2:   Average Run Length of estimated model parameter and MSE of EPD 

Sample Size 
Estimate   

  MSE     

50 0.580 0.640 0.597 0.018 

100 0.520 0.530 0.031 0.006 

150 0.480 0.510 0.026 0.003 

200 0.620 0.540 0.009 0.002 

250 0.560 0.540 0.003 0.001 

 

Table 2 shows the average run length and mean square error 

of the Exponential Pareto distribution for various sample 

sizes. When the average run length of the estimated model 

parameter and the mean square error are compared, the 

mean square error reduces as the size of the raw material 

sample rises. The associated Average Run Length (ARL) for 

a Shewart chart with the normal 3-sigma limit and a 

probability of 0.05, representing the likelihood of a single 

point slipping outside the control limit when the process is 

in control, is computed as 1/0.05, resulting in an ARL of 20.

 

Table 3:  MLE of Exponential Pareto distribution using SE  

Datasets parameters Estimate SE Log-like 

Aluminium 
mx  1 2.34 -151.837 

   141.218 168.235 -23.45 

   3.297 117.67 -12.45 

Calcium 
mx  0.11 123.45 -1.616474 

   -0.888 0.111 -1.352 

   0.419 0.059 -2.4523 

Gypsum 
mx  1.34 0.345 -167.084 

   0.298 0.054 -223.333 

   1.345 0.223 -126.359 

Iron 
mx  11779.33 1043.882 -23.343 

   866.907 7675.908 -22.34 

   1.234 45.65 -134.937 

Silicon 
mx  -0.696 0.171 -124.45 

   0.606 0.087 -125.34 

   1 0.345 -138.235 

  0.46 0.078 -124.56 

 

Table 4: X-Chart control limit for Exponential Pareto Distribution 

Control limit Aluminium Calcium Gypsum Iron Silicon 

UCL 47.60622 46.12795 48.1012 108.239 19.2119 

LCL 16.43533 16.98611 16.9698 18.0169 52.8454 

 

Table 5:  R Control Chart limit for Exponential Pareto Distribution 

Control limit Aluminium Calcium Gypsum Iron Silica 
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UCL 100.6622 15.5217 16.5814 18.0169 17.9141 

LCL 16.6021 94.1102 100.5352 109.239 108.615 

 

 

 

 

 

Figure 1:  The ARL value for Exponential-Pareto distribution model 

Figure 1 shows that the shift in ratio diminishes when the 

values of the Average Run Length (ARL) distribution grow 

at a constant interval. This data can be used to evaluate the 

effectiveness of a single control chart or a set of control 

charts. When the shift is minor (less than 2.5), a CUSUM 

chart will notice it before the control chart. 

 

   

Figure 2:  Control Chart of Exponential-Pareto 

Distribution 

The control chart for the Exponential-Pareto distribution in 

figure 2 shows that none of the points are outside the control 

limit, indicating that when the distribution is applied to all 

of the constituents, the performance is in control, with no 

sign for any assignable causes of variation in the model 

estimated. 
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Figure 3:  The control Chart for variance of Exponential-Pareto Distribution 

Figure 3 shows that the variance of the Exponential-Pareto 

distribution indicates that none of the points fall outside the 

control limit, implying that when the distribution is applied 

to all constituents, the performance is in control, with no 

sign for any assignable causes of variation in the estimated 

model. 

 

 

Figure 4:  X-bar Chart for Control Limit Interval of Exponential-Pareto Distribution 

 

The X-bar Chart (figure 4) for control limit interval indicates that all of the points are inside the control limit and that 

there are no assignable reasons of variance in the estimated model. 
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Figure 5:   X- bar chart of Average run length Exponential-

Pareto Distribution 

Figure 5 depicts the mean of the average run length of EPD 

and reveals that two of the points are outside the control 

limit, causing the ARL chart to be statistically unstable. 

Table 6: ARL, CLI and CP for mean, variance and 

standard Deviation of Raw Materials 

 Statistic Aluminium Calcium Gypsum Iron Silicon 

 Mean 32.62 31.56 32.54 33.69 36.03 

CLI variance 402.69 372.8 282.04 447.14 515.93 

 SD 17.995 18.1 19.55 21.15 22.71 

 Mean 31.342 13.435 23.34.7 26.231 34.54 

ARL variance 372.83 112.8 223.76 234.87 34.87 

 SD 32.82 32.43 65.78 211.12 112.34 

 Mean 34.12 12.6 32.343 22.12 34.31 

CP variance 231.2 31.556 12.671 112.23 32.0202 

 SD 19.345 16.825 17.9737 19.412 19.418 

Discussion 

We used the average run length (ARL), control limit interval 

(CLI), and process capability (Cp) of each element to 

estimate the parameters of Exponential-Pareto distribution 

models utilising their conditional distributions. The table 

below shows the findings for the parameters of each 

constituent utilised in the distribution for estimate. 

The generated data, as shown in table 6, revealed that the 

EPD for the control Limit Interval (CLI) of calcium is the 

lowest when compared to other constituents, and the 

variance of silicon is the greatest CLI while the standard 

deviation of calcium is the lowest. 

The average run length (ARL) of the EPD of each 

constituent demonstrates that aluminium has the greatest 

mean and iron has the biggest standard deviation. 

For EP distribution, we conducted a Monte Carlo simulation 

analysis. To perform, several samples of each constituent's 

size were employed. We generated random samples with 

initial values of = 0.5 and = 0.5, and maximum likelihood 

estimators are derived using these parameters. The 

procedure is then repeated 360 times. For the estimates, the 

mean and mean squared errors (MSEs) are calculated. It is 

determined that the generated estimations are extremely 

near to the true values of the parameters. As a result, it 

demonstrates that the estimating technique is sufficiently 

accurate. Furthermore, it is investigated if the estimated 

MSEs decrease consistently with increasing sample size. 

Finally, we have very clearly witnessed the correctness of 

the estimating methods. 

4.0 CONCLUSION 

The purpose of this research is to look into the suitability of 

the Exponential-Pareto (EP) distribution for drawing 

control charts. The EP distribution model parameters are 

determined using the maximum likelihood estimation 

approach, and its performance is evaluated using a 

simulation study. Furthermore, the EP distribution is 

compared to other models using five real-world datasets 

generated from line one's crusher mill. When compared to 
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the other models investigated in this work, the EP 

distribution appears to provide a better fit to the data. 

A simulation technique is used to evaluate the shift 

detection capabilities utilising the R programming language 

and software. For various mean shifts, control chart 

coefficients are determined, and different values of Average 

Run Length (ARL) and Standard Deviation of Run Length 

(SDRL) are created. The ARL and SDRL figures show that 

the proposed control chart outperforms existing charts. The 

process is statistically stable since the ARL, Control Limit 

Index (CLI), and Cumulative Poisson (CP) production 

operations are under control, with all data points falling 

inside the control limits. As a result, the article advises that 

exponential-pareto be used to measure the quality of raw 

materials for manufacturing. 
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