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Abstract 

Climate change is a global challenge with multiple consequences. One of its impacts is the 

increase in surface temperature intensity. The hazard is higher for populaces living in urban 

areas, where the most elevated temperatures are commonly recognized, because of the Urban 

Heat Island (UHI) effect. The city of Abuja in recent times has experienced an increase in both 

surface and atmospheric temperatures. In this study, an evaluation of the ecological impact of 

UHI effect of Abuja Municipal area was conducted using Landsat 8 data of 2019. The surface 

temperature of the city was estimated and evaluated using its thermal-infrared (TIR) band 

(10.40μm – 12.50μm). Furthermore, the correlation between LST and Normalized Difference 

Vegetation Index (NDVI) as well as the Normalized Difference Build-Up Index (NDBI) was 

also assessed to validate the accuracy of the LST. The urban thermal field variance index 

(UTFVI) was applied to measure the thermal comfort level of the city, which quantitatively 

assessed the UHI impacts on the nature of urban life. Results show that the LST of Abuja city 

ranges from approximately 19oC to 39oC with the UHI observed in the northern and eastern 

parts of the city. The UTFVI map associated with UHI indicates that the outer peripheries of 

the city are ecologically more comfortable than the inner segments. In general, 40% of the city 

experiences ecologically bad or worse UHI effects, indicating a need for continued UHI 

mitigation efforts. 
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INTRODUCTION 

Rising temperatures due to global climate change is amplified by the effect of urban heat 

islands (Della-Marta, et al., 2017). This phenomenon is widely analyzed and is one of the major 

themes of urban climatology, particularly its impact on human health (Huang and Lu, 2018). 

With more than half of the world’s people living in urban areas (55%, up from 30%), 

urbanization determines the spatial distribution of the world’s population and is one of the four 

demographic mega-trends, with the growth of the global population, population ageing, and 

international migration (World Urbanization Prospects, 2019). There is a predictable change in 

the urban environment as a consequence of this growth. One such change in urban climates 

particularly is the formation of Urban Heat Islands (UHI), a situation where the cities’ or 

metropolitan areas’ ambient temperature is dramatically altered and become warmer than the 

surrounding rural areas (Oleson, et al., 2005; Gago, et al., 2013; Alfraihat et al., 2016).  
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The Urban Heat Island (UHI) is a phenomenon that affects millions of people worldwide. The 

UHI affects urban quality of life through its impacts on human health, ecosystem function, 

local weather and climate. There is a direct relationship between peak UHI intensity and heat-

related illness and fatalities (Oleson, et al., 2005; U.S. EPA, 2014; Alfraihat et al., 2016). 

 

In several literatures across the globe, built-up areas and bare land have been shown to 

accelerate the effect of UHI, whereas green space and water reduce the UHI intensity (Amiri 

et al., 2009). Furthermore, a complex pattern of landscape composition and configuration 

controls LST (Zhou et al., 2014; Asgarian et al., 2015) while some researches opined that 

natural and socioeconomic factors simultaneously create certain effects on the LST form 

(Jenerette et al., 2007; Buyantuyev and Wu, 2010;). In addition, diurnal variation in different 

seasons plays a major role in identifying the impact and expansion of UHI in any particular 

city region because daytime LST is more unstable than nighttime LST (Zhou et al., 2013; Guha 

et al., 2017). 

 

In Nigeria, just like many other African countries, the capital cities are often faced with the 

problem of rapid urbanization, which from the aforesaid contributes majorly to the UHI 

intensity. Over time, the city of Abuja has experienced a high rate of population growth and 

urbanization (Adeyeri et al., 2015). According to census data, from 1991 and 2006, the 

population of Abuja has been steadily growing since the relocation of Nigeria’s capital from 

Lagos. It has grown phenomenally from a population of 113,000 in 1976, 378,671 in 1991 to 

1.4 million in 2006 (NPC, 2006). In a 2017 study undertaken by the Federal School of 

Surveying and the Federal Capital Development Authority (FCDA), Abuja’s population 

growth was estimated at 8.32% per annum, while satellite city populations were found to be 

rising even more quickly, at an estimated 20% each year. Rapid urbanization can be attributed 

to a range of factors including better economic opportunities on offer in the territory, 

underinvestment in smaller towns and villages surrounding the FCT, and the relative safety of 

the area in a region affected by pockets of conflict. A greater part of this population, due to 

inadequate accommodation and high rents in the city, end up settling in the suburbs of the city; 

in areas such as Kubwa, Karu, Masaka, and Nyanya. The urban growth rate of suburbs such as 

Karu and Nyanya in 2001 was 66.2% compared to Abuja city which was 40.2% (Jinadu, 2004).  

 

Urban growth in Abuja has been sped up, and extreme stress to the environment has occurred. 

This is particularly true in the city where massive agricultural land is disappearing each year, 

converting to urban or related uses. Land transformation due to urbanization has also caused 

noticeable climate changes, including increased energy demands and air pollution thereby 

impacting the quality of urban life (Gray, et al., 2000; Alfraihat et al., 2016). The impact of 

this rapid urbanization is already being felt in Abuja city as the surface temperature 

progressively spikes yearly. According to Aljazeera (2019), the months of March, April and 

May 2019 experienced extreme heat, with the Nigerian Meteorological Agency (NiMET) 
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saying that the rise in temperature has been affecting most parts of the country, including 

coastal areas, with temperatures well above 35oC.  

 

Furthermore, variables derived from remote sensing and meteorology have been combined to 

explain UHI phenomenon in Abuja city environment and the varying importance of time of the 

day on overall efficiency of the city’s UHI mitigation efforts have been reported (Adebayo et 

al., 2015; Alfraihat et al., 2016). However, a spatially-resolved ecological evaluation UHI 

effects with an Urban Thermal Field Variance Index (UTFVI) is pending for the city of Abuja 

city. With the urbanization growing rapidly, the ecological assessment of UHI has become 

important as it influences development and human living environment (Chen et al., 2006; 

Mackay, 2012; Isioye et al., 2019). Meanwhile, increasing urban heat in Abuja city municipal 

area presents a noticeable health risk for the growing population and are likely to escalate the 

stress or discomfort arising from the heat.  

 

From the aforementioned, this study seeks to use remotely sensed surface temperature data to 

retrieve LST of the study area for the year 2019 and analyze the city’s UHI phenomenon, and 

carry out an UTFVI assessment to appraise level of   thermal comfortability within the different 

areas of the city of Abuja.  In this paper, the different data sets used in the study and procedures 

for estimation of UHI and UTFVI are presented in Section 2. In Section 3, the results are 

presented and discussed. The summing up and concluding remarks are given in the final part.  
 

Description of the study area 

The city of Abuja is located in central Nigeria in the Guinea savanna between Latitudes 8°25'N 

and 9°25’N and Longitudes 6°45"E and 7°45’E and occupies an area of about 8,000 square 

kilometers. Abuja was built in the 1980s before it officially became the capital city of Nigerian 

in 1991. The 2006 census showed that the population of Abuja was776, 298 people (NPC, 

2006). In 2015, the city had an annual growth of at least 35%, making it the fastest-growing 

city in Africa and one of the fastest in the world (Abuja Facts, 2015).  

 

The Köppen climate classification for Abuja features a tropical wet and dry climate. The 

weather conditions include a warm, humid rainy season and a blistering dry season. The rainy 

season starts in April and ends in October yearly. The annual rainfall is about 1,631.7mm and 

the annual mean temperature ranges between 25.8°C and 30.2°C (Balogun, 2001). Abuja is 

located at about 840m above mean sea level and this coupled with undulating terrain of the 

study area act as a moderating influence on its weather. 

 

Abuja has witnessed a remarkable rural-urban migration of people, causing alterations and 

modifications in the LULC which has led to the development of satellite towns to which the 

city is sprawling. Due to this, more vegetal covers are being converted to urban infrastructure 

and result in micro-climate change and UHI growth. A map of the study area is shown in the 

Figure 1. 
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Figure 1. Map of the study area; Abuja city 

DATA AND METHOD 

Data 

Basically, satellite and methodological data were required to conduct this research. Landsat 

satellite images were obtained from the U.S. Geological Survey (USGS) earth explorer website 

via https://earthexplorer.usgs.gov/. The images selection was based on their good quality 

mainly in terms of cloud cover, date, month and year of collection (See Table 1). USGS 

supplies image(s) after geo-referencing them to the Universal Transverse Mercator (UTM), 

map projection (Zone 32), WGS 84 datum and ellipsoid. The detailed descriptions of the 

satellite images selected are shown in Table 1. 

    Table 1. Specifications of the satellite data used 

S/N Satellite Sensor Path/Row Acquisition date Spatial resolution Cloud cover 

1 Landsat 7 ETM+ 189/54 03/12/2009 30m/60m 0% 

2 Landsat 8 OLI/TIRS 189/54 15/12/2019 30m/100m 0% 

Weather records corresponding to the same time the LANDSAT image was acquired are 

needed for the algorithms used to derive the LST and the UTFVI. These weather data include 

relative humidity, dew points, and atmospheric temperature of the study area. The weather data 

were acquired from The Weather Channel Interactive Inc. website via 

http://www.wunderground.com/. Additionally, water vapor content in the air was among the 

required parameters for the UTFVI retrieval for ecological evaluation. The water vapor content 

https://earthexplorer.usgs.gov/
http://www.wunderground.com/
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was calculated as a function of Relative Humidity (RH) and near surface temperature (To) 

(Zhang et al., 2013; Alfraihat et al., 2016). 

Method 

The mono-window algorithm, the split-window algorithm, temperature-emissivity separation 

algorithm and the single-channel method (Gillespie et al., 1998; Jimenez-Munoz, et al., 2003; 

Lia, et al., 2013) are some of the several algorithms available for retrieving LST, a key 

parameter for the UHI estimation. While the split-window and temperature-emissivity 

separation algorithms are primarily developed for the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) data, both the mono-window and single-channel 

algorithms are applicable for thermal LANDSAT data, of which the mono-window algorithm 

is relatively simple and highly effective for retrieving the LST for the analysis of the UHI (Liu, 

et al., 2011; Alfraihat et al., 2016).  

 

To effectively appraise the ecological impact of UHI effect on Abuja municipal area, three 

fundamental steps were followed. These include: 

a) Deriving a Normalized Difference Vegetation Index (NDVI) and a Normalized 

Difference Built-up Index (NDBI);  

b) Retrieving the LST and analyzing the city’s UHI phenomenon; and  

c) Calculating the Urban Thermal Field Variance Index (UTFVI) and interpreting the 

ecological valuation of the UHI impacts. 

The Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is calculated from the visible red and 

near infrared bands. The rationale of the index is that healthy vegetation has a high reflectance 

in the near infrared (NIR) and a low reflectance in the red, thereby enhancing the interpretation 

of vegetation cover while suppressing subtle noise from other land cover types. The NDVI can 

be calculated as using equation (1). 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
                                                                                                                         (1) 

In equation (1), NIR and RED in Landsat images are the reflectance in the near-infrared and 

visible red portion of Electromagnetic spectrum respectively. In this study, the NDVI is 

calculated for two fundamental reasons, i.e., understanding the city’s vegetation pattern and 

extracting emissivity values.  

 

First, the NDVI values indicate whether the land cover type is vegetation, which has been 

shown to have a cooling effect on surfaces temperatures, hence adopted as the UHI mitigation 

strategies. Secondly, the NDVI was also used to derive emissivity values from the LANDSAT 

data based on their mutual direct relationship. The emissivity values are critical parameters 

needed for modeling the LST from the LANDSAT 8 OLI image. 
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The Normalized Difference Built-up Index 

The Normalized Difference Built-up Index (NDBI) has been an effective technique to map 

built-up areas with accuracy of 92% (Zha et al., 2005, Alfraihat et al., 2016). The index is 

calculated from reflectance bands of Landsat 8 image as: 

𝑁𝐷𝐵𝐼 =
𝐵𝑎𝑛𝑑6 − 𝐵𝑎𝑛𝑑5

 𝐵𝑎𝑛𝑑6 + 𝐵𝑎𝑛𝑑5
                                                                                                               (2) 

Retrieving the Land Surface Temperature (LST)  

Band 10 of Landsat 8 OLI 8 image is a thermal-infrared (TIR) band that has been commonly 

used for the LST mapping. The following steps were executed in this study in order to retrieve 

the LST of the study area. 

Conversion of DN to spectral radiance 

To retrieve the LST, the Landsat data were first radiometrically corrected by converting the 

digital numbers (DN) of each band to spectral radiance. It has been proven that radiation 

correction improves the accuracy of LST and other index calculation (Song et al., 2001). This 

was achieved in ENVI (an image processing software) using the following equation (Landsat 

Project Science Office, 2016): 

𝐿𝜆 = 𝑀𝐿 × 𝑄𝐶𝑎𝑙 + 𝐴𝐿,                                                                            (3) 

In equation (3), Lλ is TOA spectral radiance in Watt/(m2srμm), ML is the band-specific 

multiplicative rescaling factor from the metadata (RADIANCE_MULT_BAND 10 for Landsat 

8 OLI/TIRS), QCal is the quantized and standard product pixel value (DN), AL is the band-

specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND 10 for 

Landsat 8 OLI/TIRS). 

Conversion of spectral radiance to TOA brightness temperature 

The spectral radiance converted from pixel DN values above was used to compute Top of 

Atmosphere brightness temperature (TB) which is the effective temperature viewed by the 

satellite under an assumption of unit emissivity in Kelvin. The brightness temperature was 

computed using the following equation (Avdan and Jovanovska, 2016): 

𝑇𝐵 =
𝐾2

𝑙𝑛 (
𝐾1
𝐿𝜆

+ 1)
                                                                                                (4) 

In equation (4), K1 and K2 = band specific thermal conversion constant. For Landsat 8 OLI, K1 

= 774.89 mW/cm2/sr/μm and K2 = 1321.08 Kelvin. 

 Estimation of proportion of vegetation and emissivity 

Alemu (2019), defined land surface emissivity as the “ratio of energy emitted from a natural 

material to that of a perfect emitter (blackbody) at the same temperature”. Land surface 
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emissivity (LSE) can be derived from the emitted radiance measured from space. Land surface 

emissivity is the average emissivity of an element of the surface of the Earth calculated from 

NDVI values. The proportion of vegetation (Pv) is computed as follows: 

𝑃𝑣 = [
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉 𝐼𝑚 𝑖 𝑛)

(𝑁𝐷𝑉 𝐼𝑚 𝑎 𝑥 − 𝑁𝐷𝑉 𝐼𝑚 𝑖 𝑛)
]

2

                                                                                    (5) 

Where, Pv = Proportion of vegetation, NDVI = NDVI Values from the Image, NDVImin 

= Minimum NDVI, and NDVImax = Maximum NDVI. Using the computed value of 

proportion of vegetation (Pv) the Land Surface Emissivity (e) was computed as follows:  

𝑒 = 0.004 ∗ 𝑃𝑣 + 0.986                                                                             (6) 

Land Surface Temperature (LST) retrieval 

The following equation were used for the conversion from at-satellite temperature to land 

surface temperature in Celsius. 

𝐿𝑆𝑇(𝑜𝐶) =
𝑇𝐵

[1 + (𝜆 ×
𝑇𝐵

𝜌
) 𝑙𝑛( 𝑒)]

− 273.15                                                                                 (7) 

In equation (7), λ is the wavelength of emitted radiance, ρ = h×(c/s) = 1.4388 × 10−2m K = 

14388 µm K, h is the  plank’s constant = 6.626 × 10−34Js, s is the Boltzmann constant = 1.38 

× 10−23J/K, c = velocity of light = 2.998 × 108𝑚/𝑠. For obtaining the results in Celsius, the 

radiant temperature is revised by adding the absolute zero (approx. -273.15oC). 

Extraction of water vapor content 

The atmosphere’s water vapor content was derived from the relative humidity (RH) and the 

near-surface temperature. Water vapor content can be estimated by the following equation: 

 𝑤 = 0.0981 × {10 × 0.6108 × 𝑒𝑥𝑝 [
17.27×(𝑇𝑜−273.15)

273.3+(𝑇𝑜−273.15)
] × 𝑅𝐻} + 0.1697, (8) 

where w is the water vapor content (g∕cm2), T0 is the near-surface air temperature in Kelvin 

(K), and RH is the relative humidity (%). 

Extraction of atmospheric transmittance 

There is a difference between values of at-sensor and ground temperatures, because of the 

attenuation caused by the atmosphere. Hence, the atmospheric transmittance is calculated to 

account for this attenuation.  

Once the water vapor content was calculated, the atmospheric transmittance was estimated with 

the following equation (Qin et al., 2001; Lia, et al., 2013; Alfraihat et al., 2016) in Table 2. 

w                                                                    (9) 

where τ is the total atmospheric transmittance and w is the water vapor content. 
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    Table 2. Atmospheric transmittance as a function of Water Vapor Content of the Air column    

    (profile) for four standard atmospheric conditions. 

Air Column (Profile) Water vapor content (w) (g/cm2) Atmospheric Transmittance Equation 

High air temperature 0.4 – 1.6 τ = 0.974290 - 0.080076w 

High air temperature 1.6 – 3.0 τ = 1.031412 - 0.11536w 

Low air temperature 0.4 – 1.6 τ = 0.982007 - 0.09611w 

Low air temperature 1.6 – 3.0 τ = 1.053710 - 0.14142w 

Finally, the mean atmospheric temperature (Ta) was estimated from near surface air 

temperature based on regional conversion formula proposed (Qin et al., 2001; Sun et al., 2010) 

(See Table 3).  

               Table 2. Effective mean atmospheric temperature for four standard atmospheres. 

Standard atmosphere Effective mean atmospheric temperature (Ta) (K) 

For USA 1976 Ta = 25.9396 + 0.88045T0 

For tropical Ta = 17.9769 + 0.91715T0 

For mid-latitude summer Ta = 16.0110 + 0.92621T0 

For mid-latitude winter Ta = 19.2704 + 0.91118T0 

The near surface temperature in degree Kelvin is Abuja city air temperature recorded at the 

time of satellite overpass. Accordingly, since Abuja is located in the tropical region, the mean 

aerial temperature of Abuja city was given by: 

                   
0

 17.9769  0.91715
a

T T  ,                                                            (10) 

where Ta is the mean atmospheric temperature and T0 is the near-surface air temperature.  

Model Validation  

The NDBI and NDVI were used for the verification of the modeled LST values. Both 

qualitative and quantitative validation methods are used for verification. Qualitatively, visual 

interpretations and comparisons of the images of the NDBI, NDVI and LST values were done 

and correlation matrix was used for the quantitative evaluation. Theoretically, the LST values 

must have a positive relationship with the NDBI values and a negative relationship with the 

NDVI values. 

The Urban Thermal Field Variance Index  

In this study, the UTFVI was used for the ecological evaluation of Abuja city’s urban heat 

island because of its prior tested application to Landsat data. The UTFVI values were classified 

into six categories, each having corresponding interpreted ecological valuations and the UHI 

phenomenon (Liu and Zhang, 2011; Alfraihat et al., 2016). The index, which analyzes the UHI 

effect on the quality of urban life, is calculated using equation (11) as follows: 
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                               S mean

mean

T T
UTFVI

T


 ,              (11) 

where UTFVI is the urban thermal field variance index, Ts is the LST (°C), and Tmean is the 

mean LST (°C). 

RESULTS AND DISCUSSION 

The Accuracy Validation of LST Retrieval  

The LST of the study area was calculated from Landsat 7 and 8 images for the years 2009 and 

2019 respectively. These maps were generated to compute the mean surface temperature over 

a 10-year period and to observe changes in the temperature over time. The retrieved LST maps 

are shown in Figure 2. 

 
   Figure 2. LST distribution maps derived from Landsat images of (a) 2009 and (b) 2019 

 

The visual interpretation of the images of the NDBI, NDVI and LST values substantiated the 

theoretical relationship between these variables (Figure 3). Expanses with the high NDVI 

values (e.g., grassland) have low NDBI values and low LST. On the other hand, waterbodies 

while having low NDVI values (NDVI< 0), also have low LST and NDBI values. As expected, 

built-up areas have high NDBI values with low NDVI values and high LST (LST > 35°C). 

 

As shown in Table 3, the quantitative evaluations of the LST, NDBI and NDVI images, through 

correlation matrix, also showed similar outcomes. There exist a strong negative correlation 

between NDVI and NDBI (r = -0.7337). The high negative correlation between the NDBI and 

NDVI images is indicative of declining vegetation cover as more built-up areas emerge as land 

use. Conversely, the relationship between the LST and NDBI images is a moderate positive 

correlation (r = 0.4075), indicating an increase in surface temperature as more land use/cover 
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is converted to built-up while a moderate negative correlation is observed between LST and 

NDVI (r = -0.4547) for the area under study. 

 

 

Figure 3. LST and corresponding NDVI and NDBI values of the study area, (a) LST map (b)  

               NDVI map (c) NDBI map. 

 

                                              Table 3. Correlation matrix of LST, NDBI and  

                                              NDVI of Abuja city after masking the water bodies  
LST NDBI NDVI 

LST 1 0.40746 -0.45471 

NDBI 0.40746 1 -0.7337 

NDVI -0.45471 -0.7337 1 

 

The positive relationship which exist between LST and NDBI values reveals the heating impact 

of built-up and impervious surface areas on surface temperature, while the negative relationship 

of the LST and NDVI values ascertained the cooling impact of forests, woodlands, parks, and 

other city green spaces. The direction of the relationship captured by the correlation matrix is 

significant, as correlation matrix was generated through pixel-based comparison. 

 

Several previous studies have shown a comparable relationship between the LST values and 

these indices (Gallo and Owen, 1998; Chen, et. al, 2006; Li et. al, 2010). It is not quite clear 

why the cooling effect of the natural vegetation decimates when the percent canopy cover 

increases. And yet the negative correlation between the NDVI and LST indicate the effect of 

vegetation in reducing the UHI effect, thereby reassuring its utility for UHI mitigation. On the 

other hand, the positive NDBI and LST relation (Chen et. al, 2006).  indicated the logical 

association of the built-up areas and UHI. Both uncrowned settlement pattern, greening urban 

spaces and increasing the albedo (i.e., reflection coefficient) of the built-up surfaces can be 

adopted to lessen the impacts of the UHI in Abuja city. 
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Analysis of Urban Heat Islands (UHI) of Abuja city  

The spatial distribution of the LST of Abuja city is shown in Figure 2. According to the result, 

the mean LST is 26.5°C, the maximum and minimum LSTs are 20°C and 33°C, respectively. 

The higher LST dominates northwestern and north central areas of the city, while the eastern, 

southern and extreme northern areas have the lower LST. The UHI impacts of built-up areas 

were found to depend on the density of settlement with medium sized building. In Abuja city, 

settlements in the south of the city are less populated and have visible green spaces as compared 

with areas to the north. 

 

The results verify a previous Abuja UHI project (Adeyeri et al., 2015) which reported a 

consistent high UHI intensity in northwestern Abuja city land as compared to the east and 

downtown area.  

 

From the results it is observed that, a large portion of Abuja city (i.e., 49.5%) experiences LSTs 

of around 30 to 37°C. This was found mainly in areas around Wuse zone 2 to zone 4 and other 

populated residential areas. About 26.1% of the city, mainly in the north and northwestern areas 

constitute the second largest LST class  (28 – 30°C) while the hottest LST class (i.e., 38°C and 

above) is experienced in relatively small pocket areas, covering about 5.2% of Abuja city, 

mainly where the large commercial buildings like markets and car parks are located. The high 

UHI is detected in large commercial and residential areas due to influx of people who come 

together to do business, board a vehicle or maybe indicating the possible air heating impacts 

of gases emitted from vehicles, building cooling systems and reflection or absorbance of 

roofing sheets. Areas having the LSTs between (22 - 27°C) constitute 10% of the landscape, 

and these are lands in close proximity to the parks, forest vegetation, woodlands and green 

spaces. However, the lowest LST (less than 22°C) is recorded in only 9.2% of the city; mainly 

on the lands covered by water (i.e., lakes and wetlands).  

The Ecological Evaluation of Abuja city Urban Heat Islands  

To reflect the changes of urban thermal field directly, UTFVI can be further divided into six 

levels in accordance with six different ecological evaluation indices (Zhang, 2006). Table 4 

gives the specific thresholds in the six UTFVI levels while the quantitative ecological 

evaluation of the UHI effects in Abuja city is shown in Figure 3.  

Table 4. The interpretation of the index quantitative evaluating of the ecological effects of the 

Abuja municipal area UHI (Qin et al., 2001; Lia, et al., 2016; Alfraihat et al., 2016). 

Urban Thermal Field Variance Index Urban Heat Island phenomenon Ecological 

Evaluation Index 

Less than 0  None Excellent 

From 0 to 0.005  Weak Good 

From 0.005 to 0.01  Middle Normal 

From 0.01 to 0.015  Strong Bad 

From 0.015 to 0.02  Stronger Worse 

More than 0.02 Strongest Worst 
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According to the Urban Thermal Field Variance Index (UTFVI), which measures urban 

ecological quality of life in terms of the degree of thermal comfort in relation to the existence 

of the UHI phenomenon, varying impacts of the UHI were detected in Abuja city. The city has 

the two extremes: areas of heat stresses (i.e., UTFVI > 0.02) and areas optimal microclimate 

(i.e., UTFVI <0) (Figure 4).  

 
 

The largest portion of Abuja Municipal Area Council (44.18%) experiences optimal thermal 

condition (i.e., UTFVI <0) for living. These areas are located in the periphery of the city and 

locations in close proximity to the streams, wetlands, hills, woodlands, parks and green spaces. 

On the other hand, the areas that are hit by the worse UHI effects (i.e., UTFVI > 0.01) are 

relatively small pocket areas (i.e., 10.26%) of Abuja municipal area; while those experiencing 

thermal discomfort accounts for 11.25% of the study area. In general, according to the 

ecological evaluation of the UHI effects, the UTFVI did not detect thermal discomfort on 

88.75% of the city. It was only in the remaining 11.25% of the city that varying degrees of 

thermal discomfort and heat stresses were detected. 

 

In general, the UTFVI analysis of Abuja Municipal Area Council conforms to studies that 

analyzed spatiotemporal patterns of the UHI over Abuja using Landsat sensors. In a study 

carried out by Adeyeri et al. (2015), they observed that between 1987 and 2014, the LST rose 

by 7.66K with 2014 recording a mean LST of 309.05K while 1987 had a mean LST of 301.39. 

This shows that the change in the temperature of Abuja is quite significant and this could also 

affect the thermal comfort and health condition of the locals residing in Abuja city. The LST 

for the period of study was observed to be an increasing trend.  
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According to the report, even if there is a reduction in the UHI intensity, because of the city’s 

UHI mitigation strategies, northeastern and pockets of areas in northern and southern of the 

study area are still experiencing the UHI stresses. Therefore, urban planning that pursues 

spacious settlement pattern with green spaces and parks, and wetlands preservation is important 

to strengthen Abuja city’s UHI mitigation strategies and thereby to maintain urban quality of 

life.  

CONCLUSION 

Temperature and land cover interaction studies provide valuable insights for urban 

environment analysis as well as assistance in various city planning and decision-making 

processes for the city development. The results from this study indicate that changes in UTFVI 

distribution can be largely related to the expansion of urban area during the period under study 

(2009 – 2019). The LST, extracted from Landsat 8 OLI/TIRS imagery, Band 10, shows that 

the distribution of UHI I Abuja municipal area council (AMAC) varies. In general, results show 

that was a difference of 19°C between the low UHI intensity areas around the water body and 

the high UHI intensity areas in the densely populated northeastern neighbourhoods.  

 

In addition, from the correlation analysis of the retrieved LST with NDVI and NDBI, it was 

found that that the green land can weaken urban heat island effect, but the built-up land can 

accelerate the effect. The distribution of the UHI phenomena were found to have a direct 

relationship to the city’s land use/land cover distribution. While woodlands, urban parks and 

green spaces, have lowered the phenomena of UHIs; densely populated buildings, congested 

settlement, industrial zones and large train stations have intensified the UHI effects. Thus, this 

study recommends that in future city planning and development, more attention should be paid 

to urban greening.  

 

Results obtained from the analysis to Abuja Municipal Area’s Urban Thermal Field Variance 

Index (UTFVI), ranges of thermal comforts were detected. The hot spot of UTFVI were found 

mainly in the built-up areas especially densely populated district and in commercial districts of 

the city. These are likely areas that are susceptible to UHI. It was observed that 88.75% 

Seventy-two percent of the city’s landscape experiences normal microclimate for living, which 

is encouraging. However, a bad-to-worse heat stress condition is detected in sizable portion of 

the city (11.25%), indicating potential impacts of the UHI phenomenon on urban quality of 

life, particularly in north-western neighbourhoods and small pocket areas in the south and 

southeast. To mitigate the effect of UHI, the following strategies are recommended which 

include: increasing tree and vegetative cover, installing green roofs, installing cool, reflective 

roofs and using cool pavements (either reflective or permeable). In general, urban greening can 

significantly mitigate the UHI effect, both directly and indirectly, resulting in the decrease of 

air temperature and mean radiant temperature. It is therefore important for the city to strengthen 

and expand the hitherto stated UHI mitigation strategies to maintain quality urban life for Abuja 

city residents.  
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