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1. Introduction

Recently, concepts as mathematical understandim raathematical
meaning are becoming issues in philosophy of maditiem Particularly
interesting is that such topics border on semanticge earnestly wonder how
semantical issues can be sorted out in mathemawies though any mention of
number calls into the human mind images of its sgspd meaning and value. We
may even be able to claim this knowledge but thatilds be as simple intuition
which is readily crippled as we try to formalizeadt as our numbers increase.
Perhaps the difficulty of any industry aimed at wkdg the semantics of
mathematics can be captured by what | shall likec&dl the problem of
mathsemantics as stated bellow:

1ne + 3ree is 2rue,

If it is 2rue then it is 4alse,

If it is 4alse then it is 2rue,

It can't be neither 2rue nor 4alse,

So it is either 2rue or 4alse,

But which is it?

Problem of mathsemantics is a quest to ascerta®ngany numbers in
mathematics whether they have fixed meanings dregogpty symbols connoting
different things at different times.

In logical terms, | do not think there is any knoaigorithm that
can solve it. In fact, this problem portends a kifdset never before
considered i.e. a non-empty set of empty sets.aleof an empty set as a
set with no members but not of a set whose mendrersets and yet this
set is empty. This may look puzzling for how cathiag be and not be at
the same time. The problem of mathsemantics créaitepossibility in that
in a non-empty set of empty sets, the member setsat elements or
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objects of mathematical accretions but metamatheatgiroperties which cannot
be formalized within set theoretic terms. We kntnattadding 1+ 3 cannot yield 2
but it can yield a result '4' that is true evendf provable, it is intuitively given. If
the property 2rue is an element of the set 1nee¢ 8ren the property 4alse is also
an element of the set 1ne + 3ree. But the metammatti@al properties true and
false cannot both be elements of same set elsgetheould be saying of itself “it
is not the case that | exist” which sounds liké-sehtradictory.

Premise 4 tells us that the set necessarily hasbersmThe conclusion
says it is one of the two properties but not b&tt this is not decisive hence a
question arises: which one of the two? This becai@sy because premises 2 and
3 say that the presence of either of the two inspiiee other thus we see that this
set of sets has members and at the same time iy.effys is different from the
popular empty set which is supposed to have menthérturned out not to have
any. The non-empty set of empty sets which the Iprabof mathsemantics
portends actually has members in mathematical tdratsin metamathematical
terms is empty. Now, this is not exactly a cleasecaf self-contradiction if we
decide that mathematics and metamathematics are imotone-to- one
correspondence. But we cannot avoid stating thema aénple case of logical
consequence. Take modus ponens as an exampleg pg.plf we assert p and then
g fails to pop up, how do we solve the problem?sTgrioblem of mathsemantics
which is concerned with establishing the meaningquaihber has yielded a non-
empty set of empty sets —this | shall dub “the axif failed set!” It is a failed set
which has members and at the same time no membesaye of itself, “I have
members who do not have any members”. It is adailet also because a set is
supposed to have collections, if it does not thén émpty but when its collections
are said to be there and at the same time (coldiguicannot be found; then it is
not just empty but suffers a failure. The probleowns, how can we prove that
this failed set has elements (is not empty) orrfzaslements (is empty)?

Axiom of the failed set:
There exists a set whose members are sets wittentbers.
$x$y"z(zly=£) E (y Tx1¢)

We cannot use the emptiness sign £ for it is nejitheven empty
nor nonempty, so we introduce the sign ¢ to indi¢his. Interestingly the
failed set has little resemblance to the set af w#ich generates the
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Russell paradox i.e. axiom of comprehension. Weaogarstruct two sets (a,b) and
(b,c) and then the third which would have just thoso sets as members {(a, b),
(b, ¢)}. Now one may ask: is this third set a memlé itself? Axiom of
comprehension shows that it is. We can call it “R”™:

R = {X| X IX}.
Byt is R not a member of itself?
Rl RiffRTR.

This generates a self-contradiction for if R is enmber of itself then it is not, and
if it is not then it is.

However, axiom of failed set surprisingly does mymnerate a self-
contradiction like the one above. Let us consttuct empty sets ( )and ( ), and
then the third which would have just those two gngatts as members  {( ), ( )}
This third set would be nonempty because it has Ineesy so let us call it R and
the two empty sets we may call R.

R {X|X 1}

First we ask: Is R' a member of itself?
RITR'IffRT A

RTA

R' IR

Here, we can see no contradiction or Russell paradizes. R' is not
identical with R, thus, R' is not a member of Riiifd only if R is an empty set. R is
shown to be an empty set so R' is not a membet. tiddce R' is not a member of
itself so the axiom of failed set is consistent beer its consistency ironically
yields a problem in another aspect of mathematics.

This astonishing result is actually a problem isgdise when we shift
base to mathematical meaning or mathsemanticsus etgain replicate our sets:
two empty sets (), ( ) and a third presumad-@empty because it contains those
two as members {( ), ( )}, let us call the thR' and the other two R as before.
Second we ask: Is R' empty or non-empty set?

Case I: R'is non-empty because it has members.

R'={X| X TR}

Case II: R'is empty because its members R is empty

R {XXTAEEXIR}

Case one suggests that since R are sets and atenseshR', R' is
not empty even if R is. Simple rules of sets andnimership cover that. But
case |l is as strong as case |, it says if R istgm@pd is the member of R’
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then by default, R' is empty as well. There areost lof rules that support this,
hypothetical syllogism, induction and compositigtyalprinciples to mention a
few. Hence, is R' a hon-empty or empty set?

A failed set is a power set whose members are esyligets. So a failed
set is not necessarily empty, it is its members dh@ empty. But it can be argued
that since its members are empty, it is empty asvetabove. Again failed set has
no proper subset and which is worse, the unioprsettion and complement of its
subsets are all identical. i.e./. Hence, two sgbskt failed set cannot form a
power set. E.g.

A=F£
B=/A
AUB=ZA&

Itis only if a failed set has a proper subset thean be a power set. Since
it does not, it shows that it is not necessaripoaver set as it appears. Again, there
are no necessary and sufficient conditions to stimatvit is a power set.

AUB is a power set:

Iff A1B, but Al B is the case so A U B might agll be either A or B.
And there is no way to prove that A U B is actuaily) B so the subsets in a failed
set cannot form a power set properly so-calledsThu
P(AUB) E (A B)E(A-B)=AVB.

And any of A or B is not a power set. Thereforeeglgluded middle, if the set A is
empty, it is not the case that it is non-emptyit@opresumed non-empty power set
of a failed set is once again reduced to an eniptyesset. Therefore a failed set
which is self evidently non-empty is here showrbé&self evidently empty. | for
one, think this problem of mathsemantics has notiswl in so-far-as- we arrogate
content in our conception or definition of numbleat what implications would it
have for the philosophy of mathematics? The maiplization has to do with the
nature of mathematical meaning. To obtain the ateunsight we suggest in this
work a revisit to the concept of number and by esiten all mathematical objects.
The theory we are projecting to cushion the linotas of the post Fregean schools
like logicism, formalism, intuitionism etc., is ¢adl functionalism. It primarily
conceives mathematical objects as symbols withootents whose meanings are
functionally derived in application to empiricaliriiys. Based on this new
foundation, functionalism revisits the main quassiof philosophy of
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mathematics namely: nature of mathematical trutithematical meaning
as well as mathematical understanding. Let us$ &fsall look for the
meaning of mathematical objects across the lawmisibry. Already,
philosophers of mathematics are beginning to askvagiven the numbers,
the functors, the symbols and the signs, what donean when we speak
of them? Just like the sciences, the social scgrihe humanities and even
the religions know what they mean when they stagé& theories or creeds.

What then is mathematical meaning? Only a few yeas an
interesting philosophical question began to recaittention, it concerns
logic and philosophy of mathematics and it clainfatta “good”
mathematical proof should do more than to conviosethat a certain
statement is true. It should also explain why theesnent in question
holds, that question is: what is mathematical ustdeding?l | have
discovered in my recent researches that we cargftectively” talk of
“mathematical understanding” without first haviradked of “mathematical
meaning”. Our understanding of why certain proposg that are either
true or false actually hold must to some extenteddpon the meaning of
such propositions. It is in this light that | thinkmathematical
understanding” intersperses “mathematical meanifRgt.indeed, when we
construct a mathematical proposition from atomicriadlas and go ahead to
draw useful proofs from them must they not be magfol in themselves?
Hence, before a “good” proof should be able to a&ixpito us why a
proposition that is true holds, the proposition andeed, its atomic
formulas must be meaningful concepts or numbesymbols etc.

In this work, we take a new look at the questiormaithematical
meaning as reduced to the concept of number. Sino®er is the basic
building block of mathematics and most mathematjmalpositions are
constructed with numbers or symbols that represantbers, | shall limit
this enquiry to the meaning of number.

In this investigation, some of my key questionalisbe: is number
meaningful? What is the nature of mathematical gsdwn and of the
concept of number? If numbers are meaningful, vitidhe character of
their meanings and can this be proved in a foriystesn? In the section to
follow, | shall attempt firstly, to define our cogyts, for as
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Frege would say (xii) when we ask someone whahtimber one is, or what
the symbol 1 means, we get as a rule the answey, “whhing. But is “the
number one is a thing” a definition? The answefng” because it has a
definite article on one side and an indefinitecietion the other. Besides, it
only assigns the number to the class of thingshowit stating just what that
thing is. Our investigation here is to deciphert jaat that number 1 as a
symbol means, in other words, the meaning of s #lso important to point
out from this outset that we distinguish figumnetiaword' in this inquiry and as
such '1' and 'one' are not conceived to be eqyakxtension mathematical
proposition and linguistic proposition. Therefoteraathematical objects and
their extension into mathematical propositions e focus of this work in
which it is shown that the character of one-to-@mwerespondence of the
principle of identity ranges not only over numepcoperty but over the
semantic property as well. Perhaps Putnam's clagsimple will help us draw
the line here: “there are just as many stars imxyah as in galaxy B.” On the
most natural reading, this means that there eaistse-to-one correspondence
between the stars in galaxy A and the stars inxgdda Mathematically, it only
means that the numbers of stars in the two galateshe same, it does not
mean as well that the two groups of stars aredheesr identical. So identity
ranges over only denumerable extensions in lingusbpositions and never
over semantic extensions. This becomes clear when canstruct a
mathematical proposition.
Eg.2=2

Here we are not only saying that the numbers afi® another 2 are
the same (denumerable extension) but our theoideotity also supposes that
2 and another 2 are ontologically the same (semamtiension), such that
when we prove this proposition we say it is truieifarly, when we write 2 =
3 and our proof says something other than whaptbposition claims, we say
it is false. So the values we assign to our mattiealgpropositions are not
only results of their denumerable extensions buiséhof their semantic
extensions as well. In the Putnam example citedr@baur identity principle
could not range over the semantic extension optbposition because of the
well known problems of equivocation associated wigttural language. Such
problems include context restrictions, problems uthnslation and
transliteration, and of course that of shift. lingortant to note here that
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Frege's treatment of his theory of sense and mferer denotation as some
translations would have it, is restricted to lirgdig propositions. He never really
extended this project to mathematical propositiamdar as we can tell. This is in
part the goal of our investigation here.

2. M eaning of Number
i Frege and Others:

Defining number is not an easy task and | shalemas it for last.
However, popular conceptions following the refei@rtheory of meaning have it
that mathematical object as number is a place hdttecharacterizing things in
the world. The current president of Nigeria is GlooHd Jonathan. This proposition
conveys a picture of a man called Goodluck Jonatlhhom it refers to. But
mathematical propositions as 4 + 4 cannot be saigfer to 8, for even then, 8
would be required to refer to something else asm&aning. And so, are the
numbers and by extension, mathematical propositieesningless?

Obviously, this cannot be the case for we undedstaathematics and the
application of number but what do they refer to®ylzannot be meaningful in
themselves or they will be semantically closed.ocAlsumbers are not meaningful
in themselves or they will not be called symbols.tHey are meaningful in
themselves, such meanings cannot be known. Anddf £an be known, they
cannot be proved. In classical logic, that whichrea be proved within a given
system cannot be true within it. This also makgz@priate Frege's dictum that, in
mathematics, only that may be taken to exist wimgstence has been proved.
Hence meaning of numbers and the nature of matleahptopositions are stellar
issues. Shapiro writes that to some extent, somestigus concerning the
applications of mathematics are among this groupsafes. What can a theorem of
mathematics tell us about the natural world studtiestience? To what extent can
we prove things about knots, bridge stability, shemdgames, and economic
trends? There are (or were) philosophers who takiematics to be no more than
a meaningless game played with symbols , but eweryelse holds that
mathematics has some sort of meaning. What isntlgianing, and how does it
relate to the meaning of ordinary nonmathematicsdalirse? What can a theorem
tell us about the physical world, about human kruilitg, about the abilities-in-
principle of programmed computers, and so on?(9)
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Let me turn to Frege who devoted much attentiorthi® concepts of
meaning and number. Frege noticed the difficultyolmed in defining number.
These numbers do not have objective characteristitich make them seem
subjective. They are not objects which makes theamslike abstract concepts.

The problem is just how do you conceive them? lalgar psychological? In his
work The Foundations of Arithmetic — a Logico-Mathetical Enquiry into the
Concept of Number, Frege spelt out what he calleel three fundamental
principles which will guide this type of enquiryh&y are as follows (xxii).

1. Always to separate sharply the psychologicaimfrthe logical, the
subjective from the objective.

2. Never to ask for the meaning of a word in idolat but only in the
context of a proposition.

3. Never to lose sight of the distinction betweenaept and object.

Let me come straight to the second principle. I§ tprinciple is not
observed in any enquiry regarding the meaning ofd&/@r even symbols, one
would find himself taking as their meanings memtatures or acts of the human
mind just like the Wittgensteinian position citdabae. In this way also, one would
contravene the first principle since one would becating psychological meaning
to logical property or taking the meaning of aneaibjve entity to be subjective.

Frege's insistence that words have meanings onlyhén context of
propositions where they appear readily appliesytob®ls. The problem is that
words are less flexible and dynamic than symbots. ws therefore add here a
fourth principle:

4. Always distinguish between words and symbols.

This fourth principle is important in our enquivgcause words are
a collection of letters but symbols are both caitetof figures and letters
— these letters however cannot be words othenhisg ¢annot be symbols.
Example: “E”, “A”, “G”, “L” and “E”" are letter symbls but “Eagle” is a
word, both are therefore not the same and cannet the& same meaning.

If we apply the second principle to our presemnestigation, it
does follow that the meanings of individual symbafe not to be sought
except within the context of mathematical or fornmbpositions. A
symbol will therefore be meaningful only within eoposition
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otherwise, it will be ... what? Meaningless? Of ceurSrege did not imply this. It
seems his insistence on finding meaning of wordshiwi the context of
propositions is because the property of “meanirgytd him not a permanent
attribute of words. In his “Sense and Meaningideatifies meaning of words with
the senses of their usage in a context of a propogiLindberg, 61 -74). In such
propositions, what the words refer to which consgittheir meanings are the given
senses of their usage within a specific contexe firtajor fallout from this is that
meaning is not fixed, as a linguistic concept. 1& w&pply it to our present
investigation, it will also show that as a formahcept meaning is not fixed — it is
therefore dynamic, changing from context to contexpropositions. This shows
that we cannot talk of a meaningful symbol (in éimn) but only the meaning of a
symbol (in the context of a proposition).

Yet in mathematics as in logic, we very often agmbols in isolation of
any formal proposition and such isolated symbolyehdixed unbemused
meanings. For a simple example | can decide tcevaiit the logical operators as
follows:

1. &
2.v
E

akrw

These symbols are not in the context of any forpnapositions but they
have fixed unbemused meanings. Unlike the following

1. Eagle

2. Peacock
3. Lion

4, Swine

Frege's contention pans out here, since one miaknoov what is
meant by eagle, a high flying bird or the attribotealistinction, beauty etc.,
or by peacock is meant a multi-colored bird or @ridr by lion is meant a
beast or courage or brevity; or by Swine is meamaamal or dirtiness or
unholy. We therefore come to the realization th&gE's second principle
cannot necessarily apply to our investigation iis thay which concerns
neither words nor natural language but symbolsfandal language. But
even if it does, his context principle (no.2 abos#) restricts the meaning
of number to the context of its use, in which
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case number 7 for example will be though denumerhbt infinite according to
the number of its usage, individuals and contdhis,is not feasible!

In his theory of “Sense and Reference”, Frege appt strengthen his
views concerning the meaning of number beyonddrisolus context principle, to
“never ask for the meaning of a word in isolatitwt only in the context of a
proposition”. Here, he espouses that number cam lzaveference and a sense
according to usage (context of proposition), foaraple, “4 x 2" as a mathematical
expression stands for '8', but911-3 is a way thatriumber 8 is determined or
picked out. If the former is the reference (or wtiet number refers to) following
the referential theory of meaning, the latter woblel one of the sense of the
mathematical expression. But Frege's enterpri¢e fiai example; what would 4 2
or 5+3,0r4+4o0r7+1 =8 be called? Ish®& sense or reference in which one
and why? There is no difference between these sgime 4 + 4, 4 x 2 and 11 — 3
except that they are sum, product and differencéh&t order. Unlike Frege's
suggestions, there is nothing fundamental that evaubke one determine the
reference of numbers and others their sense. Hémegge's theory of sense and
Reference cannot adequately account for the digiindie anticipates to exist in
the sense and reference of number. What this thebows concerning the
meaning of number is that all mathematical expogsslike the ones stated above
which uniformly yield number 8 can in different veayualify as both senses and
references- so there is no distinction after ajitlie principle of identity therefore,
sense and reference are formally the same, anceibnitz's law what belongs to
one belongs to the other. But if we are to inclingselves to Frege's distinction,
then the fall out is that for any given number,réhevould be infinitely many
number of sense and references for it in which ¢hsetheory of mathematical
meaning is defeated. This is because by his copiéntiple, there are infinitely
many contexts in which a given number could be used by his sense and
reference, there is no rigid rule that determinéatwualifies as a sense and what
qualities as a reference of a given member.

Also in the formal language of arithmetic and lggihat might be the nature of
arithmetical propositions since the individual syisb are capable of being
meaningful even in isolation?

If | state the following formal proposition: 2 +=24
By Frege's second principle, we may wish to knovatwthe individual

10
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symbols 2, 2, 4 mean in the context of the propmsitin linguistic propositions
we may begin by consulting a dictionary, a thessuaureference book and then
narrowing the results down to the context of theiage; in a formal proposition
such as we have above, we talk of proof. It isdfee hoped that the proof that 2
+ 2 = 4, if successful will account for the mearingf the symbols in the
propositions. But the problem arises, are numefarahulas provable?

Frege distinguishes numerical formulas, such a3 2+, which deal with
particular numbers, from general laws, which haddjfor all whole numbers (5).
The former are held by some philosophers to beaugirle and immediately self-
evident like axioms (Hobbes, 19 and 62 — 63: LdZk¥, 6: Newton,3 iii, 24).
Kant on his own says they are unprovable and stintfE57) but Frege hesitates
to designate them as axioms because they are netajeand because the number
of them is infinite. To return to one of the claimsde, are the particular numbers
really and in all cases self-evident? If they dhen we might begin to think of
arithmetical formulas truly unprovable at leassime sense. Let us consider this:
7165 + 17928 = 25093 the above formula is certaimdy self-evident. Hence,
when Kant thinks we can call on our intuition aigers and points for support, he
was thinking of only small numbers so that the dangimbers would be provable.
Yet again, this will lead Kant into the mistake todating these propositions as
empirical as opposed to his view that they aretmtit a priori, for whatever our
intuition of 7165 fingers may be, it is at leastarlly not pure. On the whole, if the
numerical formulas were provable from say, 100w®a,should ask with fairness,
“why not from 6 on? or from 2 on? or from 1 on? Hoan it be that some are self-
evident and others provable?

Leibniz4 is one of the very few who grant that muital formulas are
provable whether small or large. In his words:

“It is not an immediate truth that 2 and 2 are
4; provided it be granted that 4 signifies 3 and
1. It can be proved, as follows:

Definitions: (1) 2is1and 1

11
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(2)3is2and 1
(3)4is3and 1

Axiom: if equals be substituted for equals, the

equality remains.

Proof: 2+2=2+1+1 (by Def. 1) =3 +1 (by

Def. 2) = 4 ( by Def. 3).

2 + 2 =4 (by the Axiom)” (363).

However, Frege points out an omission (7). If wekl more closely, we can
discover a gap in the proof which is concealed gwio the omission of the
brackets. To be strictly accurate, that is, we khbave to write:

2+2=2+(1+1)

2+1)+1=3+1=4
What is missing here is the proposition

2+(1+1)=(2+1)+1
Which is a special case of

at(b+c)=(@+hb)+c
Grassmann and Henkel also share this opinion whiessociativity. If we assume
this law, it is easy to see that a similar proofi tee given for every formula of
addition. Be that as it may, the proof of 2 + 2 ha% yet to tell us the meanings of
the symbols involved.

John Stuart Mill5 is of the opinion that matheroatisymbols cannot be
said to be meaningful unless they refer to obsdeviarts. Numbers have senses
which are their meaning. The sense of a numberssfeom the observable fact
which it refers to. But there are two problems hds tposition. Firstly, do all
numbers large and small refer to observable fegesdndly, what would a number
like O refer to? A O orange perhaps — | believeone has ever observed that. Even
if Mill argues that O is a number or symbol with sense how could he defend
that? A number with no sense would be an empty syrbbt our calculations
reveal that O is not empty. When for example we d@do 10 and obtain 20, it
strikes a quick chord in us that 0 is rich withssrfor if it were not so, why did 10
+ 10 not yield 2? The fact that 1 + 7 gives usr@] when we introduce 0 in front
of 1, the result increases tremendously to 17 shbatsO could have a sense equal
to 9, even though we do not know this for certétirvould be wrong for Mill to
deny a sense to 0, just as it would be for anyonassert that the observable fact
which,
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according to Mill, is contained in the definitiofi@an eighteen — figure number has
ever been observed.

Mill also proposes to make use, for his prooftaf formula 5 + 2 = 7, of
the principle that “whatever that is made up oftmpais made up of parts of those
parts” (5). This he holds according to Frege (I2)be an expression in more
characteristic language of the principle familiaiLiibniz in the form “the sums of
equals are equals”. Mill calls this an inductivetlr and a law of nature of the
highest order. Thus, Mill understands the symbai such a way that it will serve
to express the relation between the parts of aipdlysody or of a heap and the
whole body or heap; but such is not a sense ofsyrabol. That if we heap 2 unit
volumes of rice into 5 unit volumes of rice we $liglve 7 unit volumes of rice, is
not the meaning of the proposition 5 + 2 = 7, butpplication of it, which only
holds good provided that no alteration of the vaduhas occurred. Hence, Mill
always confuses the applications that can be made arithmetical propositions,
which often are physical and to presuppose obseffeets, with the pure
mathematical proposition itself.

Further still, in his analysis of the natural nerd) Frege tells us (Basic
Laws, ix) that the “fundamental thought” on whicis lanalysis of the natural or
“counting numbers” is based, is the observationt thastatement of number
involves the predication of a concept of anotharcept; numerical concepts are
concepts of “Second Level”, which is to say, cotsamder which concepts (of
first level) are said to fall. This according tor@epoulos and Clark (133) yields an
analysis of the notion of a numerical propertyw&ien we predicate of the concept
horse which draws the king's carriage the properie first order definable in
terms of the numerically definite quantifiers. Irder to pass from the analysis of
numerical properties to the numbers, Frege intredute “cardinality principle”
(Hume's principle), which he “defined” contextuadly:

NxFx=NxGx F G,

i.e., the number of Fs is the same as the numb@&saf and only if the Fs and the
Gs are in one to one correspondence.

This contextual definition and the fundamental tjicu yield
Frege's account of the applicability of mathematlosthis, the simplest
case for which the question arises — the applicaifdhe cardinal numbers

— the solution is that arithmetic is applicablegality because
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the concepts, under which things fall, fall undemerical concepts. For example, |
have 12 cars; 12 is a humerical concept under wihieltoncept of car falls. Thus,
the numerical property 12 is here applied to theperty of car but this cannot
account for the meaning of the numerical symbol dt2for the meaning of
numerical or formal propositions.

To return to the nature of formal propositions, Ksays they are synthetic a priori.
Immanuel Kant's thesis that arithmetic and geomateysynthetic a priori was a
heroic attempt to reconcile these features of nmatiies. According to Kant,
mathematics relates to the forms of ordinary pearoepn space and time. On this
view, mathematics applies to the physical worldaose it concerns the ways that
we perceive the physical world. Mathematics coreéine underlying structure and
presuppositions of the natural sciences. This ¥ hmathematics gets "applied."” It
is necessary because we cannot structure the phygarld in any other way.
Mathematical knowledge is a priori because we qaover these presuppositions
without any particular experience (Shapiro, 5). #&position makes intuition the
ultimate ground of our mathematical knowledge. ®ethave earlier showed that
large numbers upon calculations are not intuitivef-evident. This will impede
upon our modest efforts to obtain the meaning ohlmer. Frege on his part says
that formal propositions are analytic. If this & shen the predicate symbol will
normally be contained in the subject symbol — thils make formal propositions
semantically closed and therefore incapable ofdingl the meanings of number.
Furthermore, formal propositions cannot be wholigp&ical as Mill supposes
otherwise; we would contravene Frege's first and thrinciples. Shapiro notes
that the conflict between rationalism and empirtieflects some tension in the
traditional views concerning mathematics, if nogito Mathematics seems
necessary and a priori, and yet it has somethiwip twith the physical world. How
is this possible? How can we learn something ingmtrabout the physical world
by a priori reflection in our comfortable armch&ir®). Indeed, the true nature of
formal or numerical or mathematical propositionmais an open question for
philosophers of mathematics.

Let us then return to the question altbet nature of number or
symbol contained in the mathematical propositidmsntselves. Readily,
the question which comes to mind is how might nunite defined? A
definition of number possibly represents a windote its meaning
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according to the assumption that definitions ofcegats or objects ipso fact contain
ideas of their meaning. But in the case of numbemeputable philosopher | know
has been bold to offer a helpful definition. Intfac Hankel6 is of the opinion
that number is not definable. In his words, “wha&t mrean by thinking or putting a
thing once, twice, three times, and so on, canmotdéfined, because of the
simplicity in principle of the concept of puttingV/hat this means is that “putting”
is a defining concept and is in the words of Russ®mic such that it cannot be
further broken down. But this is not the only peshl Frege says, what about the
words once, twice, three times (27), we might ndaeeable to define them. On his
part Leibniz views number as an adequate idea. \Whaheans is that the concept
of number is clear upon contact and so is everg @mtained there in. this leaves
open the point that number is indefinable but twald be an assumption simply
because no one has succeeded in this attempt airttiat it is a proven fact. |
myself shall not attempt to define number at least at this stage of the
investigation. Be that as it may, | concede thathage again lost an important
window which might lead us into understanding theaming of number. But one
issue that still resonates to this day is whethathematical objects—numbers,
points, functions, sets—exist and, if they do, vaketthey are independent of the
mathematician, her mind, her language, and so imm fhere onwards realists and
anti-realists engage in a face off on whether nmattieal objects are objective or
not. Some notable realists include (Gédel [1944419Crispin Wright [1983],
Penelope Maddy [1990], Michael Resnik [1997], Shail997]); anti-realists
include (Michael Dummett [1973,1977]);(Geoffrey IlHean[1989] , and Charles
Chihara [1990]. Other groups include the three gipal schools, logicism,
formalism and intuitionism as well as psychologidattionalism, Platonism and
conventionalism.

Platonists maintain that mathematical objects drstract entities,
existing outside space-time, and independent of @amceptions. But if
mathematical objects like numbers are outside spame how do we come to
know them? This leads to Benacarraf-Putnam proloeatcess (30-33). How
are we supposed to have epistemological acces#it®® existing outside of
our sphere? Intuitionism, the school which attsuéexistence of numbers to
human thought claims to have answers to this. Madtieal object for them
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exist as an entity in the intuitionist's thoughteyiting says that mathematical
objects are by their very nature dependent on huthanght. Their existence is
guaranteed only insofar as they can be determinethdught (53). However,
intuitionist's position is inches away from thattbé psychologist who conceives
mathematical objects as ideas or notions of thalrfilocke, 1). If the intuitionist
is unable to account for the self-evidence of aghteien digit number, the
psychologist would be unable to defend his thegigchvturns mathematics into
psychology.

On the other hand, the formalist and the conveatist deny Platonism.
While the formalist favors mathematics with a meisble subject matter as forms
of symbols on paper (Brouwer, 78: Von Neumann,&Bg conventionalist
maintain that mathematics has no objects, or idaes, they simply have the
properties we assign to them by convention (Qu829-331). But how can the
marks on the formalist's paper account for the nmgawf numbers? And if
mathematics has no objects, as the conventiomadist, then it makes no sense to
talk of numbers in the first place. His positiorcisse to that of the nominalist who
rejected Platonism because he found the idea dfa@bsobject unintelligible
(Benacarraf and Putnam, 23). But that the platsnidéa is unintelligible does not
mean mathematical objects as numbers do not &tistfictionalist says numbers
exist but as the constructs of human imaginatidnis position is way out of the
line as it would reduce mathematics to one of tieattve arts. Logicists would not
accept this, Frege for one posits that mathematibgdcts are objective although
non-sensible. This makes logicism a little bit idifft to interpret for how can an
entity be objective and at the same time non-s@a®ili was Carnap (41) who
made their position more explicit by capturing neattatical objects as concepts
which comes to life through definition and postetataxioms), they are therefore,
objective because of their applicability to emgfievorld. For them therefore, a
mathematical object exists if proved and would maningful by default. Having
rejected Platonism, the one unanswered questioainsmis mathematical object
like number an external or internal property?

In our common usage in language, numbers functsoadgectives
and take such places as the words, blue, solidlyhghich have for their
meanings properties of external things. But caralse
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think of individual numbers in this way or groupeth in the same class as say,
color?

Scholars like Cantor7 (2 and 4) and Lipschitz (&)8 of this bent of
mind. Cantor says that mathematics is an empirgc&nce since it considers
things in the external world. Numbers for him onafe only by abstraction from
objects. Schroder as noted by Frege also sees muasba property of external
things. He says it is modeled on actuality (21) Ekplanation is that number is
derived from things by a process of copying theuactinits with ones, which he
calls the abstraction of number. The units are tepgesented only in what he calls
the point of their frequency. What this means iat tindividual numbers are
derived according to the occurrence of things -s tfixequency becomes another
name for number.

Baumann (669) rejects this position that numbers properties of
external things. Mill says they are physical thingscke and Leibniz see them as
existing only as notions. For Locke, they applyrten, angels, actions, thoughts —
everything that either exists or can be imaginedil&/for Leibniz number is
applicable to everything, material and non-matetiahis words:

Some things cannot be weighed, as having no
force and power; some things cannot be
measured, by reason of having no parts; but there
is nothing which cannot be numbered. Thus
number is, as it were a kind of metaphysical
figure (162).

Yet a problem arises, how might we begin to dediphe meaning of that
which is metaphysical? Do we suppose therefore thahber is something
subjective? | shall visit this later. Mill's contemm that number is something
physical in the sense that two pears are physidaiffgrent from three pears as
visible and tangible phenomena seems plausibleveutannot conclude there from
that their twoness or threeness is something eaftesn physical. Number is
obviously different from an object it is attributéd. If number then, is nothing
physical and probably nothing metaphysical, how eféght we conceive it?
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In the present context, Shapiro (10) notes thagtrestion is whether the
mathematician must stop mathematics until he hasnaantics for his discourse
fully worked out. Berkeley, an idealist philosophsays that number is not
something fixed. As he puts it in his New Theoryigion (109).

It ought to be considered that number ... is notHirgd

and settled, really existing in things themselVess. entirely

the creature of the mind, considering, either agaidby

itself, or any combination of ideas to which it gévone

name, and so makes it pass for a unit. Accordinghas

mind variously combines its ideas, the unit vari@sgd as

the unit, so the number, which is only a collectafrunits,

doth also vary. We call a window one, a chimney, @l

yet a house, in which there are many windows, aadym

Chimneys, hath and equal right to be called oneraady

houses go to the making of one city.

In the light of this Berkeleyian insight, we camoss within our context
here that the meaning of number is flexible. AndBaskeley points out, many
numbers may come to symbolize many things andlyef them symbolized by a
number say 1. There can be many symbols signifgifigrent things, yet different
symbols signifying the same thing. This shows thamber as a mathematical
symbol is dynamic and not fixed. This is probaltitg reason it has remained
indefinable and which is worse, the reason it islha pin down its meaning. For
when we talk about the meaning of number, we atgusb talking of the meaning
of number but on a larger scale, the meaning ofyeiwaividual number. Since
number 1 is different from number 2, and every nerrib not the same with any
other number, it follows that our enquiry is notr&zial one. Does this therefore
imply that (i) since numbers are many and differ@htas mathematical symbols,
many and different numbers can be subsumed in orsomme numbers (iii) the
character of being dynamic and not fixed mean tlmber can be accounted for
with recourse to the human mind? By this | meah tlianber could be analyzed as
a property of the mind in much the same way Kagdts it as a mental category. In
this way, we can validly say that number is sonmgtlsubjective, but is it?
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If number is something truly subjective or psychyial then it cannot be
realistically attributed to physical things but agree that number is an attribute of
external things. Frege holds the view that it isyfmare subjective than the moon is
a cheese. The temptation to regard number as aciiej concept seems,
according to Frege, to come from the link betwdendoncept and reason which
judges facts. In his words:

| understand objective to mean what is

independent of our sensation, intuition and

imagination, and of all construction of mental

pictures out of memories of earlier sensations notit

what is independent of the reasons, -for what are

things independent of the reason? To answer that

would be as much as to judge without judging, or to

wash the fur without wetting it (36).

In this way, Frege disagrees with Schloemilchwhp calls number the
idea of the position of an item in a series. If m@mwere an idea Frege objects,
then, arithmetic would be psychology. But arithroési no more psychology than,
say, astronomy is (37). Also, Frege goes on, if memwere an idea then each will
be private to individuals (37). We can thereforeadpof my own four and your
own four. In this way what one means by two or fait be different from what
another means by these numbers. But we know arajade that 2 + 2 equals 4. It
will be strikingly absurd and the whole world ofnemerce will fall into chaos
when the six billion world populations have sixlibih ideas of 2; and the
forecasted population explosion of future generatioome with even more diverse
and intriguing ideas of two. Hence, number canmoalsubjective concept. It may
not also be an objective property as Mill conceilvas according to Frege, it can
be non-sensible and objective (32). What Frege méare is that his conception
of objectivity is something distinguishable from aths handleable or actual. In his
words:

The axis of the earth is objective so is the

centre of mass of the solar system, but |

should not call them actual in the way the

earth itself is so. We often speak of equator

as an imaginary line; but it would be wrong

to call it an imaginary line in the dyslogistic

19

FILOSOFIA THEORETICA Vol. 1 No. 1 Dec. 2011

sense; it is not a creature of thought, the
product of a psychological process, but is
only recognized or apprehended by thought.
If to be recognized were to be created, then
we should be able to say nothing positive
about the equator for any period earlier than
the date of its alleged creation (35).

What Frege is saying is that what is objectiveetsognizable by everyone and can
be conceived and judged by reason. And numbetttikeaxis of the earth and the
centre of mass of the solar system fall within fnésnework. However, what we
have learnt so far is that number is neither somgtbbjective nor subjective but
objective in a non-sensible way, this has yet toaat for the question: what is the
meaning of 2? What is the meaning of 3? What isntle@aning of 5 and so on?
According to Alberto Coffa [1991], a major item dhe agenda of Western
philosophy throughout the nineteenth century wasdoount for the (at least)
apparent necessity and a priori nature of mathesiatid logic, and to account for
the applications of mathematics, without invokinything like Kantian intuition.
In his words, the most fruitful development on thias the "semantic tradition,"
running through the works of Bolzano, Frege, thelyedVittgenstein, and
culminating with the Vienna Circle. The main themerinsight, if you will— was
to locate the source of necessity and a priori kedge in the use of language.
Philosophers thus turned their attention to liniuisatters concerning the pursuit
of mathematics. What do mathematical assertionsnth&ihat is their logical
form? What is the best semantics for mathemataraglage? The members of the
semantic tradition developed and honed many ofdbks and concepts still in use
today in mathematical logic, and in Western phifigo generally. Michael
Dummett calls this trend in the history of philokgghe linguistic turn.

In doing this, modern philosophers of mathematimscentrated more on
the nature of mathematical object and mathematiatii which are superstructural
questions at the expense of the substructural iguestvhat is mathematical
meaning or better still, what is the meaning of ben? Frege was the last
philosopher to seriously investigate this in higksoalready referred to above. He
concluded following his context principle that timeaning of every individual
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number is to be found in the sense it refers tchiwita give context of a
proposition. This position seems to have been Whaicepted in contemporary
discussions by philosophers of mathematics or astleconsidered a trivial
guestion. But it is no more trivial than the anig@f species is to the evolutionist.
Numbers are the basic building blocks of matheratikich is by far according to
Heyting (53), an architectonic structure. Alsom&thematics is the world's most
exact science, then the meaning of its basic mgl#iock cannot be trivialized.

Frege's conclusion that the sense which a numlzpriras in the context
of a proposition is its meaning is rejected in thégper. The main reason for this
being that since every individual number is capalblacquiring different senses in
an infinite number of contexts, it follows that Banumber can have infinite
number of meanings. But this is not the way numlieshave in the economics of
everyday life, else accounting would be chaotict 2= 4 always and at all times
is true simply because 2 has a fixed meaning ikstd has its own, and these hold
notwithstanding contexts. The main problem witkede’'s theory of sense and
reference and the context principle is that theyd leo multiplication of meanings.
And so we can see no conclusive response to thgtignewvhat is mathematical
meaning? To be modest, the question has not el@maagain since Frege, aside
for a number of critical commentaries and revigit§rege, prominent among them
is Alonzo Church's four series paper on the fortutaof the logic of sense and
denotation9. In these papers the author attemfuigtification of Frege's views in
what has come to be known thereafter as Frege-@htiveory of sense and
denotation. Here a distinction is drawn betweenstémse of a word in the context
of a proposition and its denotation i.e. customaense or meaning. Nathan
Salmon in his paper 'A Problem in the Frege-Chutichory of Sense and
Denotation’, argues that the shifts withessed andiations into other languages
and the fact that Frege's concept of Bedeutungnotdtion acquires the character
of tentativeness lead to a collapse of Frege andrdbls argument about
denotation. It should also be noted that similabpgms have been identified by
Benson Mates and partly also by Tyler Burge, Jos€wens and Anthony
Andersonl0. It is in the light of this need to het the epistemology of
foundations of mathematics that we pursue thisimduere. However, one thing
we can
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pick from Frege is that numbers fall into codesamh add 2 to 3 to get 5; 3 to 5 get
8; 2 to 8 to get 10. Does this mean that the codiysjem can account for the
meaning of individual numbers? Is the meaning f&to be found in 10? or 10 —
2 to be found in 8? This enquiry occupies this papesently.

ii. Fibonacci Number Code and Zeckendorf Representation

Number representation can be done in many waysflinterest to us are
the Fibonacci code and the Zeckendorf representdtee Fraenkel “System of
Numeration” for a fuller account of all known numlmede system).

Here is an investigation into representing numlasrsums of Fibonacci
numbers. First, let us just use any Fibonacci nurobee in any of our sums to see
what we get. For example:

i. 1 is a sum all on its own. So there is just snen of Fibonacci numbers

with a sum of 1.

ii. 1+ 1 = 2 but we are not allowing this as adfibcci sum since we have
used 1 more than once.
iii. 2 is, however, a sum formed of Fibonacci nunsbe

iv. 1+ 2 =3 and 3 is also a Fibonacci numbehsog are two sums for 3.

V. 1 + 3 =4 is the only way to make a total of ging only Fibonacci
numbers.

vi. 2 + 3=5and again 5 is a Fibonacci numbethsoe are two sums for 5

Vii. 1+2+5=3+5=8, 8is a Fibonacci numbéth three sums.

viii. 2+3+8=5+8=13. 13 is a Fibonacci rhanwith three sums.

iX. 1+2+5+13 =8+ 13 = 21. 21 is a Fibonacci hamwith four sums

etc. Basically, Fibonacci numbers are obtainedduirgg a preceding one
to its successor. As in above, we added 1 + 218,02+ 3=5;3 + 5 = 8;
5+8=13; 8+ 13 = 21; 13 + 21 = 34; 21 + 34 =Bl so on. These are
Fibonacci numbers and coding system. Eduardo Zelck&na Belgian
Doctor in his 1972 paper “Representation des Nombrg (pp 179 —
182), developed a system commonly known today ascK&ndorf
representation” or “minimal form” as a basis
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of Fibonacci arithmetic in which the Fibonacci rhers can be

represented in sums, without of course repeatiygFalmonacci

number except in the 1 series

Let me explain this theorem with an example if we # present the

number 30 in the Fibonacci code, there are twogthito note: first, 30 is not a
Fibonacci number. Second, we are asked to presemtHibonacci code which
means we are going to use the sums of FibonaccbersnThis is what is called
Zeckendorf representation. Since the number wetaresent is 30, we are to
choose those Fibonacci numbers that are below 80.s8 we have: 1, 1, 2, 3, 5, 8,
13, 21 as digit weights for such representation. Backendorf representation of
the sums of Fibonacci numbers for the number & i®llows: 30 =21 +8 + 1 =
21+5+3+1=13+8+5+3+1=13+8+3+1+ 1. Butamongthemitis
possible to select one and only one represent&fion 21 + 8 + 1, in which no
consecutive Fibonacci numbers are being used.
Let us consider one practical application of theoRacci number representation in
the conversion between miles and kilometers. Adogrtb Ron Knottll we have
approximately 8 kilometers in 5 miles. Since bottihese are Fibonacci numbers
then there are approximately Phi (1.618..) kilomseia 1 mile and Phi (0.618..)
miles in 1 kilometer. The real figure is more like6093... kilometers in 1 mile.
This comes from the precise definition of 1 inclualg 2.54 centimeters exactly,
and 100,000 centimeters make 1 kilometer. In theehmal system, 36 inches are 1
yard and 1760 yards are 1 mile.
Replacing each Fibonacci number by the one befdras the effect of reducing it
by approximately 0.618 (phi) times (the ratio of#onacci number to the one
before it is nearly phi). So to convert 13 kilomstéo miles, replace 13 by the
previous Fibonacci number, 8, and 13 kilometeralisut 8 miles. Similarly 5
kilometers is about 3 miles and 2 kilometers istatiomile.
Now suppose we want to convert 20 kilometers toesnivhere 20 is not a
Fibonacci number? We can express 20 as a sum oh&iisi numbers and convert
each number separately and then add them up. Thus:
20=13+5+2
Using  to stand for approximately equals andaeipg 13 by 8,
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5by 3 and 2 by 1, we have
20kms = 13 + 5 + 2 kilometers
i 8 + 3 + 1 miles
= 12 miles
To convert miles to kilometers, we write the numlzdr miles as a sum of
Fibonacci numbers and then replace each by thelamger Fibonacci number:
20kms = 13 + 5 + 2 kilometers
i 21 + 8 + 3 miles
= 32 kilometers
There is no need to use the Fibonacci representafi@a number, which uses the
fewest Fibonacci numbers, but you can use any awatibn of numbers that add to
the number you are converting. For instance, 46nkdters is 2 x 20 miles. So
40kms is 2 x 12 = 24 miles approximately.

One might wonder what role the Fibonacci numbetechas to play in
deciphering the meaning of number, but that is ebsi The Fibonacci
representation shows if nothing else that thersoimething in a number beyond
what it adds up to. How else can we explain thetfzt 8 kilometers of Fibonacci
number when converted yields 5 miles of yet anoFikonacci number? Why not
6 or 7 or 4 perhaps, but 5? Also, why are non- iréloci whole numbers capable of
being presented in Zeckendorf sums of Fibonaccibara? To be honest, | do not
know why, but what presents itself from this istttreere must be peculiar meaning
resident in each number which leads to such harmdrgn they interplay like the
examples we have shown above.

However, the fact that the sums of 1 + 2 + 5 =8+«5 = 8 also reveals
the flexible character inherent in the Fibonaccpresentation. If individual
numbers have meanings, it shows that such meaaimggaot fixed but tentative.
They obviously shift from context to context theyetorresponding to Frege's rule
2 that meaning of words are to be obtained in th&ext of propositions where
they appear. Hence, the Fibonacci representatiowsthat there is something in a
number but whatever it is, “meaning” or “sense”tsignot obvious and it is at the
same time tentative. So our quest to understandriening of number is not
solved here.
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iii. My Zero Number Code System
It has been debated over time whether 0 is a nultbe same sense as

say 1 or 2 or 1,000. While some agree others digadt is partly for the interest of

those who deny numeric capacity to 0 and partly floe interest of our
investigation that | have chosen to conduct thisflinquiry.

0 is a number with full numeric capacity. Howevénere is a little
difference between 0 and the rest. It is in addjti@ building number. By this |
mean it is a number capable of enriching the seafesher numbers as well as
playing explanatory role in its special appearandasan enrichment role, it
appears in front of other numbers while in an exalary or special role, it appears
in the middle and behind other numbers. Hencedheving theorems:

1. The numeric value of 0 is approximately 9 noaalby in the sense of 9
but in the sense of 1, 1, 1, 1, 1, 1, 1, 1, an®dt. in some ways, the
former and the latter have one to one corresporddralowing this we
can deduce that 1, 1, 1,1, 1,1, 1, 1, and 1 ahdv@ the same values
without having to state they are the same. My cldiat the value of 0 is
approximately 9 stems from the simple observati@i tvhen we place 0
in front of |, it becomes 10 and 10 minus 1 is 9.

2. Theorem “2” states that when we place 0 in frand number (a unit) it
grows as a sum of 9 in accordance with the unirant of which it is
placed. In this way 0 placed in front of 1 will gras a sum of 9 intol
times plus 1 which will yield 10; in front of 2, will grow as a sum of 9
into 2 times plus 2 which will yield 20 etc. Undiiis capacity, O plays
enrichment roles.

3. Theorem “3” states that when two 0s are planddint of a number, their
values will be calculated differently. While thecldsest to the number is
calculated as the sum of 9 into the number of mliaber, the last O will
be calculated as a product of 9 and the rest ¢frilimber + the number.
For example, 400, from the sum of 94 + 4 = 40 dedgroduct of 9 x 40
+ 40, we get 400. This is an enrichment role fopze

4, Theorem “4” states that when three Os are placéwnt of a number, we
calculate the value of the last 0 as a product @né the rest of the
number. Example, 3000 will yield 9 x 300 + 300 whiis 3000. This
shows another enrichment role of zero.
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5. Theorem “5” states that when n Os are placefilont of a humber, we
calculate the value of the last O as a product @@ the rest of the
number. Example, 4n will yield 9 x 4 “n” + 4 “n” With is 40n. This is
also an enrichment role for zero.

6. Theorem “6” states that when 0 is placed behimimber it accounts for
units which grow in sums example, 01 which can gmwums till 099.
This is an explanatory role for zero.

7. Theorem “7” states that when 0 is placed in riiddle of numbers it
indicates the silent number range from hundredushnd, million etc.,
example, 1045. Here 0 indicates the silent numdiege of hundreds. This
is another explanatory role for zero.

On the whole, the essence of this inquiry for awestigation is that the number

zero shows that numbers possibly have values ded e something other than

them. This has the potentiality to reveal the magmn numbers. But the question
arises: is 9 the meaning of 0? or does 0 mean1,1,,1, 1, 1, 1, and 1? If we say
yes then what do we understand by 9 or 1, 1, 1, 1, 1, 1, and 1 other than
number? In simple terms: what do they mean as slghbGertainly, our brief

inquiry here has shown that there is something leééénd number but whatever it
is, is not obvious. So our question whether nuntes meaning is not fully

answered by the zero-number code system. A widepalcan make from here is
that mathematical objects like number may not exfr all otherwise why is it

difficult to trap the meaning of numbers? The naatist argues that there are no
numbers, points, functions, sets, and so on. Thedouon advocates of such views

is to make sense of mathematics and its applicatiafthout assuming a

mathematical ontology. This is indicated in théetf Burgess and Rosen's study

of nominalism, A Subject with No Object [1997].

A variation on this theme that playedimportant role in the history of our
subject is formalism. An extreme version of thiswj which is sometimes called
"game formalism," holds that the essence of madties is the following of
meaningless rules. Mathematics is likened to tlg pf a game like chess, where
characters written on paper play the role of pidodse moved. All that matters to
the pursuit of mathematics is that the rules haaenlfollowed correctly. As far as
the philosophical perspective is concerned, themfilas may as well be
meaningless. Opponents of game formalism claimrtfethematics is
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inherently informal and perhaps even non-mechanlathematical objects have
meaning, and it is a gross distortion to attempgimre this. But | want to remain
optimistic and in the following section shall catesi the Igbo numeric system.

3. Igbo Numeric System

| have found among the Igbo of Eastern Niger rigecurious number
code system in which each of the t??ala or basiobeus has if you wish a
meaning. The Igbo numeric system is divided into:tthe t??ala or basic and the
jik?? or building numbers. The t??ala numbers hosd numbers out of which
other numbers are formed and they are eleven irbeumamelyi, +, 7, ©, ©,0 ,
©,0, ©, 1, I, which immediately translates into the followingahic numerals: 1,
2,3,4,5,6,7,8,9, 0, 10, the jik?? numbershenother hand are all the numbers
formed by combining the t??ala numbers, and tharsges froml to infinity.

However, for the Igbos, there are only eleven nemmbin existence and
these are the t??ala numbers, every other numhderiged from this set as for
example ©© is derived from © and®©. In this way alsaly the t??ala numbers
have fixed meanings, while the jik?? get their niregs1 by means of derivation and
permutation. When a given jik?? number is derivied, meanings of the individual
t??ala numbers which consisted it will be permutedbtain the meaning of that
jik?? number.

:z;:fllir Meaning | Classification| Sign Quality

! Weakness | Weakening : Neutral

+ Omen Heavy + Negative
Strength Mild A Positive

© Balance Mild |:| Positive

© [nnumerability| Power * Positive
Multiple f4s

© (excessive Heavy X:X Positive
strength)

© Power Power <é> Positive
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Multipl H Negati
© (e)lilcelgsieve balance) cavy <‘Z’:Z> cgative

© | Indomitability " Power w Positive

I Mystery Heavy O Negative

I Grace Mild %% Positive

The rules of permutation to derive the meaningsaarillows:

1. The weakening number is a neutral number, andeaused to effect any
number to change classification or quality or both

2. When the weakening number effects itself it cfesn quality and
classification.

3. Any jik?? number is to be added up and effetiatkrive its meaning e.g.
©OLO = +© (28). Here ++ © 31 and the meaning of is grace.

4. Any jik?? number that when added exceeds ondrkdrnis to be divided

by the first number; if there are remainder, sucbutd be added to the
result. This process is to be continued until thsult falls below one
hundred and can yield a t??ala number.

5. No jik?? number whether below one hundred orisdto be effected

unless it has been first added up.
To effect means to permute the meaning of a numitbranother. Let us
demonstrate a good example with +©, ©© ©, +©0© (2B276). We add
up this jik?? number to get:© © (46). Next we eff@cto ©. This yields
II (10) in the t??ala number series. And then we lgokhe meaning of
ten which is grace.

6. The process of adding up jik?? number below buedred is to be
continued until it forms one of the t??ala numbéise result is to be
further added up until it forms a t??ala numbepteft is effected.

Hence, the Igbo numeric system clearly shows thahbers can have fixed

meanings. This is novel but then it comes with spnadlems. It is understandable

that number + which means omen i.e. + = + E O. Thus may know in Igbo
numeric epistemology that numbers have fixed
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meaning but how can we transfer this into the Arahimeric system with which
we conduct our mathematical enterprise? Let F bharaeric system; let G be the
eaningfulness and let X be the free variable.

{X:Fx} = {X:GX}E"X (Fx GXx)

That x is a formula of a numeric system equals mé&aningful, and this implies
that for all x, x is a formula of a numeric syst&srequivalent to x is meaningful.
But here comes Gddel's G2: if the above logicalesyds complete so as to prove
Gx then it is not consistent which flaws the whptecess; if on the other hand it is
consistent, then Gx cannot be proved within it. ideer, if we assume that this
second order logical system is consistent, it meaascannot prove Gx (i.e
meaning of numbers) in it. This is the problem witte formal definition of
meaning as referential. Here we have a logicaksysthich suggests that numbers
refer to their meanings, yet the consistency ofsystem shows that the referential
attribute cannot be proved within it. Our systeroabshows:

(Fx=Gx) E"x (Fx Gx)

In a first order system this means that:"x (Fx @) Ge. that Gx is
provable or derivable in Fx. If this is the casertlit is not the case that Gx is not
provable or derivable in Fx i.e. x ~ (Fx © Gx); fnowhich we derive the
implication: "x (Fx © Gx) E x ~ (Fx © ~Gx). If thiss granted then it is not the
case that not Gx is derivable from Fx, i.e. "x (-&x GXx). But this is what the G2
(Godel's second incompleteness theorem proves pfsecond and first order
formulas above. Yet the problem remains; how carpmwee the consistency of a
system that helps us derive Gx from Fx? This besoanéecision problem or as
David Hilbert termed it the EntscheidungsproblemmdAgoing by the results
obtained by Alonzo Church (345 — 363: A Note, 481} Emil Post (103 — 105)
and Alan Turing (230-265), there is no general ailym for determining whether
a given formula U of the functional calculus Z iyable, i.e. that there is no
Turing machine (M) which given sufficient time agplace, will eventually halt on
input n.

Do we then take it to mean that our numbers haganings only in the
epistemology of natural language but cannot begaam a formal language? Or,
that the decision problem is soluble only that \egenot
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pursued its solution rigorously enough? Which eogee it is, philosophers of
mathematics should never raise their heads witthepuintil they have discovered
the meanings of the basic building blocks of thelti® most exact science, or at
least establish that numbers or mathematical abjbeate no fixed meaning in
which case they will be meaningless for they wikn, serve the mathematician as
mere, empty symbols.

4, The Question of Mathematical Meaning

Philosophy of mathematics is conceived to investigauestions
pertaining to the existence of mathematical objectature of mathematical
propositions, nature of mathematical truth and theaning of mathematical
objects. Only recently, the question of mathemaéticaerstanding has been raised.
Any sincere attempt to address the later questadily raises the question of
mathematical meaning? The primitive of this questie the old inquiry: are
numbers meaningful? To this | shall like to add tledowing collections:
mathematics is a formal science, as a science rofisfodoes it have semantic
imports or are the forms empty of meaning? Beti#ly is it the forms or the forms
of things that are meaningful? Axioms or postulades essential ingredients in
mathematical proof; are they meaningful constricthemselves, in the mind of
the mathematician or are their meanings simplytfanal? Proof or provability is
a basic character of the mathematical science; ttemesutcome of this exercise
(proof) have any semantic import? In other words, tHe results of proven
formulas or theorems have any ontological meanb&gides the formal adherence
to the rules of such proofs? Are mathematical gr@whpirical or rational? What is
the relationship between mathematical entities #uedobjective world? What is
the nature of mathematical meaning? Is it mentaysizal, conventional, nominal,
structural or functional? An attempt to supply aeswto these questions of
mathematical meaning would take us back to thedations of mathematics. For
this | shall have to go to the basics and definalmer.

Contrary to the views of Leibniz, Mill, Locke, Bealey, etc., whose
definitions or descriptions allocate content to bem | think number is simply a
place-holder without contents, a fractional exist@hose contents are things other
than itself. This | think is what Frege wishes ty svhen he says number is
objective but non-sensible. My position
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tallies with that of the logicist in that numberrist objective in the sense of every
other sensible thing. It differs from the logicist that it is without content; its
existence is fractional and dependent on empititialgs. It is an empty symbol
which serves as a sign of numbering, measuremehtlassification of empirical
things. As a symbol therefore, it is empty of cogebut a function of empirical
entities. In this way it is like an empty can intich milk, food, beverages of
assorted types or any sensible things can be stdtesl is why it serves as a sign
of numbering, measurement and classification oisém things. Without number
and by extension all mathematical objects, thingshe world can hardly be
classified, measured or grouped, therefore, ittexésen though its existence is
chiefly functional and dependent on the existenterpirical things. Number
therefore cannot be existing as thought like thaitionists say; nor can it exist
outside of space and time as the Platonists contesrdexist as mere ideas in the
mind as the psychologists maintain; nor not existtlze norminalists and the
conventionalists partly insinuate; nor is it an gimary creation of the human mind
as the fictionalist say. If anything, it is notdikhe formalist maintains an entity
whose existence can be justified by ink and papéris is taken serious one might
as well argue that the formalist is a kind of p&dphical nominalist denying the
existence of mathematical objects. If two thinge amid to stand in a certain
numeric relation, do we mean that they do so iati@h to some marks on paper?
This is a subtle weakness in the formalist thoublletace, if number were any one
of these suppositions, then it would be nonsensicapply it to sensible things.

Contrary to Hankel who states that number is im@dfie and Leibniz
who sees it as an adequate idea; | wish to saythmaber is definable and that it is
not an idea much less an adequate one. It is atyesymbol which serves as a
place-holder for classifying, measuring and grogpionf sensible things.
Ontologically, this makes number and indeed allheatatical objects, abstract and
whose objective nature is dependent on the obgectature of sensible things. So
my views differ with that of the logicist in thaumber is not only objective but
objective in a pseudo sense. Semantically, it is vigw that mathematical
proposition can only be said to be true or faldlofang its proof. In this way, the
position of this paper tallies with that of the ianfalist who objects to the realist
claim that mathematical propositions are eitheg tru
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or false necessarily but differs with the anti-igain that truth of propositions
must be functionally derived. For us the functiéstal the truth of propositions are
functionally derived when the meaning of such psifians reflects the facts in the
world. If the realist view is correct, what is tipdace and need for proof? The
intuitionist, Platonist, fictionalist and the comimnalist would not need proof for
any of their formulas. Number therefore, is funetily meaningfully as a symbol
and as an instrumentality of grouping, classifyargl measuring sensible things.
And so to the question what is the nature of mattieal meaning? | say it is
functional- mathematical objects perform functi@ssplace-holders for empirical
entities and derive their pseudo-objective existetiere-from. We see that one
thing common among the formalist, intuitionist ammbicist foundations of
mathematics and the only one not denied, is thefpconstructability of their
results. This represents for us the functionaliats,indubitable frontline and an
acceptance of the functionalist nature of matherabhtheaning and by extension,
functionalist foundations of mathematics.

The nature of mathematical meaning cannot be palygjhysicalism)
because mathematical objects are not essentialpirieal entities; it cannot be
mental (mentalism) because they are not essentiadigtal or properties of the
intellect; it cannot be structural (structuralisbgcause mathematical objects do
not constitute meaningless symbols justifiable omty paper, neither do proofs
constitute empty games; it cannot also be nomimam{nalism) because
mathematical objects are viable and active instnimef proof and therefore not
insignificant or possibly non-existent; and finallthe nature of mathematical
meaning cannot be conventional else how do we atdouso many theories once
accepted as true but later rejected as false? Nhatheal objects are not
meaningful by our convenient decision or valuesassign to them by convention
but simply by their peculiar functions.

Also, mathematical propositions as Frege said &yé#n. It is impossible
to construct a mathematical proposition which imaratizable whose subject term
is not contained in its predicate term. If mathdosais not a science of proof, this
probably would be possible, but since it is, itngossible or so it seems at least!
Hence, mathematical meaning also seeks beyond,pilmwfsemantic content of
proven results.

Hence, this paper rejects Frege's treatment ofntkaning of
mathematical objects. His context principle andseisse and reference
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have been shown in the body of this work to offamaamsensical account of the
meaning of mathematical objects. It is only when &g shown in this work
discover thus far, that mathematical objects afg fimctionally meaningful that
we would be able to grasp the worries of matherahtinderstanding: the reasons
why propositions that are proved true or false abtthold. A good mathematical
proof therefore is able to tell us that true anddgropositions hold because the
mathematical objects through their instrumentatfioms of grouping, classifying
and measuring sensible things are able to givelagital commitment to such
mathematical propositions such that their meanowfion the facts they refer to.
It is therefore only when we conceive number as liyhobjective like the
empiricists or with content like the logicist andetrest do, that we face the
problem of mathsemantics as stated in the beginafrignis work i.e. a lack of
proof whether number is meaningful or meaningless.

5. Conclusion

We have in this work attempted to derive or diggothe meaning of
number having raised a problem to that effect whwehchristened mathsemantics.
We showed that this problem is insoluble in sodarwe allocate content to
mathematical objects. In 2 answers to the questimed were sought in the views
of famed authors across the tapestry of the hisibour subject with no satisfying
result. In 3 where we looked at the Igbo numeristesy, we bumped into what
satisfies the referential theory of meaning, irt thambers were seen to have fixed
meaning but the problem arose when we tried togmvderived the meaning of
number from a formal or mathematical language. Trisled our investigation in a
new problem namely: the decision problem, whichfao as philosophers of
mathematics are concerned has no positive solagoret.

What this shows therefore is, either the meanofgsumbers as the Igbo
numeric system helped us to discover cannot beeprav a formal system or that
we have not worked hard enough to achieve this. tBeh, the Igbo numeric
system has yet another problem: the whole of gedlitso massive as to be
represented by only eleven attributes corresponttiripe eleven numbers which
the Igbo say exist. If mathematics which has nunalsets basic tool truly accounts
for many facets of reality, then reducing the masstructure of number to eleven
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attributes comes short of fully accounting for theaning of each individual
number; not even the compositionality principle garssibly justify this. Despite
this the Igbo numeric system remains the closedlt toathe goal of our
investigation.

Again, if 2 + 2 is 4, and if 2 has fixed meanthgn whenever we double
it we should necessarily get 4 if and only if, 4tains two 2s. But if numbers have
tentative sense as Frege claims, then we can aladdy$wo 2s to get any number
fitting for the context. This will mean that 2 +r2ay not necessarily be 4, and
which is worse, if one thousand people performad sum, it would be more
accurate if one thousand different results areioéta This is because; the sense of
the number 2 will naturally vary from individual tedividual.

On another hand, if actually numbers have fixedmmgg then we cannot
possibly have two of any number and it will be irapible to add two 2s to get 4
just the same way we cannot add two eagles toagge €This will make it easy for
us to reduce the whole of number system to justeel@s the Igbo numeric system
suggests or even fewer and pin down their indiido@anings. But whereas this
will make our investigation conclusive, it will dhe other hand turn the discipline
of mathematics into an absurd enterprise for thenmight be unable to add,
divide, multiple, subtract and indeed perform b# intricate exercises as we do in
mathematics today. In 4 however, we articulatedheotty of mathematical
meaning, supplying a finite answer to the probldmmathsemantics. To actualize
this we conceived and defined number differently-aapseudo-objective and an
abstract entity without content whose functionseorénd shape reality. We
therefore, showed that the problem of mathsemaigiediminated following this
procedure.

There are therefore, four main deductions of owestigation namely:
that numbers have tentative senses in that whaeRreontext principle and the
theory of sense and reference were able to shalatsnumber takes different
meanings according to context, and context detersnigense of use; that the
consistency of the result of Igbo numeric systenictvishows that numbers have
fixed meanings cannot be proved in a first-ordemfd system; that the union of
syntax and semantics of number created what we twl problem of
mathsemantics which led to the failed set followamgattempt to formalize it. The
failed set tells us that given a non-empty setnopiy sets, we would not be able to
tell whether it is empty or not. When shifted ta mquiry concerning
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the meaning of number, it tells us that given ansnber whatsoever, we would not
be able to tell whether it is an empty symbol ot, maeaningful or not. Yes,
number according to Frege has senses which vany dantext to context, but that
is another way of saying it has no own meaning.ddeit is the position of this
essay that whether number has meaning (denotativedt, cannot out rightly be
proved or disproved unless it is conceived in augeeobjective sense. Fourthly
and finally, it is our position that the above #ideductions are inadequate thereby
necessitating our investigation in this papers lalso our position here that number
is not meaningless; that the tentative senses atetheir meaning; that all
mathematical objects are abstract and pseudotokgemn nature which we
designate in this paper as functional and that theaningfulness and truth-values
can be adequately accounted for only in a functiesease. From this therefore, the
guestion that justifies our endeavor in this wask ‘if we could not as little as
grasp the meaning of our mathematical objects, bowd we reasonably talk of
mathematical understanding?
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