IMPACT OF AGRICULTURAL POLICY REGIMES ON THE OUTPUT OF FOOD CROPS IN NIGERIA (1980 – 2015)

AGBACHOM EMMANUEL, AJIGO IKUTAL, DAVID ADIE ALAWA, ONABE MARIA, ETTAH OTU
AND REGINA ADO ANOH

(Received 11 May 2020; Revision Accepted 20 April 2022)

ABSTRACT

The study evaluated the impact of agricultural policy regimes on the output of food crops in Nigeria (1980-2015). The specific objective was to; determine the growth rate of selected crop output. Time series data were used for the study. Data used in the study were obtained from Food and Agricultural Organization (FAO) crop production database for Nigeria, covering the period 1980-2015, and was analyzed using both descriptive and inferential statistics. Growth model was used to examine the trend in selected crop output. The study showed that the compound growth rates for all the crops were positive; cassava (4.92%), cocoa (2.61%), maize (5.84%), palm oil (2.84%) and rice (4.15%). This implies that there was a moderate increase in the output of the selected crops over the years. The compound growth rate in the output of maize among the crops considered was highest (5.84 % per annum) followed by cassava and was slow in cocoa with a compound growth rate of 2.61 % per annum. This result suggests that among the crops considered, maize is witnessing appreciable increase in production. The result specifically leads to the conclusion that output of cassava and rice had a direct influence on GDP growth in Nigeria from 1980 to 2015. The study therefore recommends that, the slow process of growth (deceleration) in the output of cassava, cocoa, maize and rice could be enhanced by the use of improved extension services and provision of input supports to the farmers involved in the cultivation of these crops.

INTRODUCTION

Agricultural policies provide among others for adequate financing of agriculture. The role of agricultural sector in diversification of economy cannot be over emphasized, given that it guarantees food security of any nation. Public expenditure on agriculture have however been shown not to be substantial enough to meet the objectives of government agricultural policies (International Food Policy Research Institute, 2008). The Nigerian agricultural policies have undergone metamorphosis at several stages of the country’s development, starting from the colonial era to the post-colonial era of 1963. In the early part of the post-colonial era the country had a policy based on surplus extraction. This was later transformed to an export-led policy, which brought about an improvement in the economy of the nation. The western region was exporting groundnut, while the south eastern region was known for oil palm. Agriculture contributed immensely to the Nigerian economy in various ways namely; provision of food for increasing population, supply of adequate raw materials to increase foreign exchange earnings. The Green Revolution (GR) policy changed the policy. The green revolution changed the policy of food importation and encouraged exportation. The needs is described as a Nigeria’s plan for prosperity, popularly christened a “Home grown programme” by the former president of Nigeria, Chief Arenw Olusegun Obasanjo. It was a four year medium term plan for the period of

Agbachom Emmanuel, Department of Agricultural Economics University of Calabar, Calabar, Nigeria

Ajigo Ikutal, Department of Agricultural Education and Vocational Studies University of Calabar, Calabar, Nigeria

David Adie Alawa, Department of Agricultural Education and Vocational Studies University of Calabar, Calabar, Nigeria

Onabe Maria, Department of Agricultural Education and Vocational Studies University of Calabar, Calabar, Nigeria

Ettah Otu, Department of Agricultural Economics University of Calabar, Calabar, Nigeria

Regina Ado Anoh, Department of Forestry and WildLife Resources Management, University of Calabar, PMB 1115 Calabar, Nigeria.

© 2022 Bachudo Science Co. Ltd. This work is licensed under Creative Common Attribute 4.0 International license
2003 – 2007. Needs is a federal government plan, which also
effects the state and local governments to have
their counterpart plan, that is state economic
empowerment and development strategy (SEEDS) and
the Local Government Empowerment and Development
Strategy (LEEDS) and respectively. Needs significantly
want to eradicate poverty and promote self-reliance,
entrepreneurship innovation and rewards for hard work.
Evaluating the present government policy via its
achievement of NEEDs, core objective seems to portray
the government views in pursuing and realizing the
ideas of development plan. The other policy, the new
partnership for Africa’s development (NEPAD) is an
initiative of the former organization of African unity
(OAU) that came into being in 2001 with South Africa,
Nigeria, Egypt, Senegal and Algeria as the founding
member countries. NEPAD has its primary objective to:
eradicate poverty, place African countries, both
individually and collectively on a path of sustainable
growth and development, half the marginalization of
Africa in the globalization process, accelerate the
empowerment of women and fully integrate Africa into
the global economy.

Furthermore on the concept of structural adjustment
programme (SAP) was carried at opening up economies
to increase international trade by either reducing or
eliminating protection for domestic industries. In addition
the policy is often implemented along with the
devaluation of currency in order to make exports of the
devaluating country’s export cheaper in the international
market. Three types of changes trade liberalization and
empowerment generation in Nigeria were common,
noticed in the increase in rates, increase in rates and/or
removal from or addition to the import prohibition list.
(Ayanwu, 1992).

Major new initiatives included the elimination of export
taxes, the reduction of import tariffs on agricultural
inputs and the launched of agricultural credit support
schemes. The structural adjustment programme (SAP)
policy regimes (1986 – 1993), as a result of which
government largely withdrew from directly controlling
production. Other programmes were National Economic
Empowerment and Development Strategy (NEEDS),
1999 – 2007, Agricultural Transformation Agenda (ATA)
2009 – 2015, the key policy thrust of this document was
the supply of farm inputs directly to rural farmers to
boost agricultural production.
The above policy regimes affected the positive increase
and production of rice, maize, cassava, palm oil and
cocoa output as Nigeria is seen to be the leading
producers of some of these crops.

OBJECTIVES OF THE STUDY
The major objective of this study was to determine the
impact of agricultural policy regimes on the output of
food crops in Nigeria (1983-2015) and the specific
objective was to; determine the growth rate of selected
crop output during the policy regime periods.

STUDY AREA
Nigeria has an area of 923,769 square kilometres and is
situated on the west coast of Africa with a population of
over 140 million people. The country lies on latitudes 9°
04’ 39.90” north of the Equator and longitudes 8° 40’
38.84” east of the Greenwich meridian. It is bounded on
the west by the Republic of Benin and the Republic of
Niger; on the east by the republic of Cameroon; on the
north by Niger and Chad Republics and to the south by
the Gulf of Guinea. The climate is equatorial and semi-
equatorial. There are two seasons; the wet and dry
season and agriculture is the major employer of labour
and the mainstay of the economy despite her
dependence on oil.
The climatic conditions in Nigeria (Temperature Relative
Humidity, Sunshine, Rainfall) and the abiotic factor (soil)
are favourable to the maximum production of yams, rice,
maize, cassava, palm oil and cocoa. The following crops
are cultivated extensively in the northern part of Nigeria
(yam, rice and maize) whereas cocoa, cassava and oil
palm are extensively cultivated in the southern part of
Nigeria.

Method of data analysis
To investigate the influence of agricultural policy
regimes on food crop output in Nigeria, we employed a
combination of analytical tools including descriptive
statistics and Analysis of variance (ANOVA) model
involving dummies

Growth rate model
The slope gotten from the ordinary least square (OLS)
regression of the linear form of the models was used in
calculating the growth rate of the selected crop outputs.
The model is specified below:

\[Y = B_0 + B_1 (GR) + B_2 (SAP) + B_3 (PSAP) + \text{Ut} \]

Where:
\(Y \) = Output of selected crops
\(B_0 \) = Slope
\(B_1 \) = Coefficient
\(\text{Ut} \) = error term

The ANOVA model
The ANOVA model is given below:

\[Y = \beta_0 + \beta_1 (GR) + \beta_2 (SAP) + \beta_3 (PSAP) + \text{Ut} \]

GR = dummy variable which takes the value 1
during period of pre OFN (1980 – 1983) and O
otherwise
SAP = dummy variable which takes the value 1
during period of SAP (1986 – 1993) and O otherwise
PSAP = dummy variable which takes the value 1
during period of post SAP (1994 – 2009) and O
otherwise
\(\text{Ut} \) = stochastic error term

RESULTS AND DISCUSSION

The growth rate in output of selected crops
The result showed the growth rate of selected crops
output is presented in Table 2. The result showed that
the coefficients of determination (\(R^2 \)) values for
cassava, cocoa, maize, palm oil and rice were 0.90
(90%), 0.54 (54%), 0.62 (62%), 0.32 (32%) and 0.83
(83%) respectively, thereby indicating a positive
relationship between the outputs of the crops and the
trend factor (period of production). This means that
trend as a variable was very essential accounting for
90%, 54%, 62%, 32% and 83% of the variations
observed in the output of cassava, cocoa, maize, palm
oil and rice respectively. It can be generally concluded
that the trend of crop output over the period of study was increasing for the five crops, with maize output experiencing the highest. The findings agrees with that of Oyakhilomen (2012) who reported that time was significant in influencing output of maize.

Table 1: Output of food crops in Nigeria (1983-2013) in metric tonnes

<table>
<thead>
<tr>
<th>Year</th>
<th>Rice MT</th>
<th>Maize MT</th>
<th>Cassava MT</th>
<th>Palmoil MT</th>
<th>Cocoa MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>1090000</td>
<td>612000</td>
<td>11500000</td>
<td>650000</td>
<td>153000</td>
</tr>
<tr>
<td>1981</td>
<td>1241000</td>
<td>720000</td>
<td>11000000</td>
<td>530000</td>
<td>174000</td>
</tr>
<tr>
<td>1982</td>
<td>1250000</td>
<td>766000</td>
<td>11700000</td>
<td>500000</td>
<td>156000</td>
</tr>
<tr>
<td>1983</td>
<td>1280000</td>
<td>1027000</td>
<td>99500000</td>
<td>500000</td>
<td>140000</td>
</tr>
<tr>
<td>1984</td>
<td>1300000</td>
<td>1196000</td>
<td>11800000</td>
<td>500000</td>
<td>160800</td>
</tr>
<tr>
<td>1985</td>
<td>1430000</td>
<td>1826000</td>
<td>12090000</td>
<td>615000</td>
<td>160000</td>
</tr>
<tr>
<td>1986</td>
<td>1416000</td>
<td>3550000</td>
<td>12388000</td>
<td>650000</td>
<td>148000</td>
</tr>
<tr>
<td>1987</td>
<td>1780000</td>
<td>4612000</td>
<td>13876000</td>
<td>715000</td>
<td>150000</td>
</tr>
<tr>
<td>1988</td>
<td>2081000</td>
<td>5268000</td>
<td>15439000</td>
<td>700000</td>
<td>253000</td>
</tr>
<tr>
<td>1989</td>
<td>3303000</td>
<td>5008000</td>
<td>17404000</td>
<td>700000</td>
<td>244000</td>
</tr>
<tr>
<td>1990</td>
<td>2500000</td>
<td>5768000</td>
<td>19043000</td>
<td>700000</td>
<td>256000</td>
</tr>
<tr>
<td>1991</td>
<td>3226000</td>
<td>5810000</td>
<td>26004000</td>
<td>760000</td>
<td>268000</td>
</tr>
<tr>
<td>1992</td>
<td>3260000</td>
<td>5840000</td>
<td>29184000</td>
<td>860000</td>
<td>323000</td>
</tr>
<tr>
<td>1993</td>
<td>3065000</td>
<td>6290000</td>
<td>30128000</td>
<td>857000</td>
<td>370000</td>
</tr>
<tr>
<td>1994</td>
<td>2427000</td>
<td>6902000</td>
<td>31005000</td>
<td>837000</td>
<td>323000</td>
</tr>
<tr>
<td>1995</td>
<td>2920000</td>
<td>6931000</td>
<td>31404000</td>
<td>860000</td>
<td>203000</td>
</tr>
<tr>
<td>1996</td>
<td>3122000</td>
<td>5676000</td>
<td>31418000</td>
<td>892000</td>
<td>225000</td>
</tr>
<tr>
<td>1997</td>
<td>3268000</td>
<td>5254000</td>
<td>32050805</td>
<td>937000</td>
<td>268000</td>
</tr>
<tr>
<td>1998</td>
<td>3275000</td>
<td>5127000</td>
<td>32695000</td>
<td>903000</td>
<td>292000</td>
</tr>
<tr>
<td>1999</td>
<td>3287500</td>
<td>5476000</td>
<td>33657000</td>
<td>930000</td>
<td>338000</td>
</tr>
<tr>
<td>2000</td>
<td>3298000</td>
<td>4107000</td>
<td>34010000</td>
<td>960000</td>
<td>340000</td>
</tr>
<tr>
<td>2001</td>
<td>2752000</td>
<td>4596000</td>
<td>32980000</td>
<td>990000</td>
<td>362000</td>
</tr>
<tr>
<td>2002</td>
<td>2928000</td>
<td>4890000</td>
<td>34120000</td>
<td>990000</td>
<td>362000</td>
</tr>
<tr>
<td>2003</td>
<td>3116000</td>
<td>5203000</td>
<td>36304000</td>
<td>1022000</td>
<td>385000</td>
</tr>
<tr>
<td>2004</td>
<td>3334000</td>
<td>5567000</td>
<td>38845000</td>
<td>1094000</td>
<td>412000</td>
</tr>
<tr>
<td>2005</td>
<td>3567000</td>
<td>5957000</td>
<td>41565000</td>
<td>1170000</td>
<td>441000</td>
</tr>
<tr>
<td>2006</td>
<td>4042000</td>
<td>7100000</td>
<td>45721000</td>
<td>1287000</td>
<td>485000</td>
</tr>
<tr>
<td>2007</td>
<td>3186000</td>
<td>6724000</td>
<td>43410000</td>
<td>1309000</td>
<td>360500</td>
</tr>
<tr>
<td>2008</td>
<td>4179000</td>
<td>7525000</td>
<td>44582000</td>
<td>1330000</td>
<td>367020</td>
</tr>
<tr>
<td>2009</td>
<td>3546250</td>
<td>7358260</td>
<td>36822248</td>
<td>12333050</td>
<td>363510</td>
</tr>
<tr>
<td>2010</td>
<td>4472520</td>
<td>7676850</td>
<td>42533180</td>
<td>970820</td>
<td>339200</td>
</tr>
<tr>
<td>2011</td>
<td>4612614</td>
<td>8878456</td>
<td>46190248</td>
<td>930000</td>
<td>391000</td>
</tr>
<tr>
<td>2012</td>
<td>5432930</td>
<td>8694900</td>
<td>50950292</td>
<td>940000</td>
<td>383000</td>
</tr>
<tr>
<td>2013</td>
<td>4823330</td>
<td>8422670</td>
<td>47406770</td>
<td>880000</td>
<td>367000</td>
</tr>
<tr>
<td>2014</td>
<td>6002831</td>
<td>10058968</td>
<td>56328480</td>
<td>910000</td>
<td>248000</td>
</tr>
<tr>
<td>2015</td>
<td>6256228</td>
<td>10562050</td>
<td>57643271</td>
<td>1185879</td>
<td>195000</td>
</tr>
</tbody>
</table>

Source: Computed from FAOSTAT data, 2016

Table 2: Analysis of Growth rate of output of selected crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Coefficient</th>
<th>Standard error</th>
<th>R²</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassava</td>
<td>0.048</td>
<td>0.0028</td>
<td>0.90</td>
<td>17.31***</td>
</tr>
<tr>
<td>Cocoa</td>
<td>0.0258</td>
<td>0.0041</td>
<td>0.54</td>
<td>6.32***</td>
</tr>
<tr>
<td>Maize</td>
<td>0.0568</td>
<td>0.0076</td>
<td>0.62</td>
<td>7.5***</td>
</tr>
<tr>
<td>Palm oil</td>
<td>0.028</td>
<td>0.0069</td>
<td>0.32</td>
<td>4.03***</td>
</tr>
<tr>
<td>Rice</td>
<td>0.0407</td>
<td>0.0031</td>
<td>0.83</td>
<td>13.07***</td>
</tr>
</tbody>
</table>

Source: Computed from FAOSTAT data, 2016. CGR = compound growth rate, IGR = Instantaneous growth rate.
Instantaneous and compound growth rates of cassava, cocoa, maize, palm oil and rice over the study period (1980-2015)

The computed instantaneous and compound rate of growth for the output of cassava, cocoa, maize, palm oil and rice in Nigeria is presented in Table 1. In the estimated growth rate models in Table 1, the slope coefficients of cassava, cocoa, maize, palm oil and rice was estimated and used to obtain the instantaneous and compound growth rates. The instantaneous growth rates of 4.8, 2.58, 5.68, 2.8 and 4.07 for cassava, cocoa, maize, palm oil and rice respectively implies that over the period of 1980 – 2015, the production of these crops in Nigeria increased at instantaneous (at a point in time) rate of growth. The compound growth rates (r) were estimated from the instantaneous rates of growth. The study revealed that 4.92 %, 2.61%, 5.84%, 2.84% and 4.15 % were the compound growth rate obtained for cassava, cocoa, maize, palm oil and rice respectively. The compound growth rates for all the crops were positive. This implies that there is a moderate increase in the output of the selected crops over the years. The compound growth rate in the output of maize among the crops considered was fastest (5.84% per annum) followed by cassava and was slow in cocoa with a compound growth rate of 2.61% per annum. This result suggests that among the crops considered, maize is witnessing appreciable increase in production. This agrees with findings of Amman (2012) who reported similar result.

Crop output during the various policy regimes

Table 3: Analysis of variance (ANOVA) result for crop output within GR period 1980 – 1983

<table>
<thead>
<tr>
<th>Sources</th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
<th>F-crit</th>
<th>P-value</th>
<th>F-cal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between group</td>
<td>5.43E + 14</td>
<td>4</td>
<td>1.36E + 14</td>
<td>3.25E + 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within groups</td>
<td>4.06E + 12</td>
<td>25</td>
<td>1.62E + 11</td>
<td>2.76</td>
<td>*835.32</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.47E + 14</td>
<td>29</td>
<td>1.89E + 13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: computed from FAOSTAT, 2016

The result showed that in Table 3, f-cal is 835.32 and f-crit is 2.758, therefore, there is a significant difference in the output of various crops during the GR policy regime period with cassava having the highest mean value 11,340,000kg followed by palm oil 5,491,66.7kg while cocoa had the least mean value of 157,300kg.

SUMMARY

The study evaluated the impact of agricultural policies program regime on the output of food crops in Nigeria from 1980-2015. The specific objective was to: determine the growth rate of selected crop output, compare the crop output during the various policy. Time series data was used for the study. Data used in the study were obtained from FAO crop production database for Nigeria and publications of the Central Bank of Nigeria (CBN) and National Bureau of Statistics. The data covered the period 1980 to 2015, and was analyzed using both descriptive and inferential statistics. Findings of the study suggests a strong indication that there is acceleration in output growth rate of maize (IGR 5.84%; CGR 5.68%), rice (IGR 4.15%; CGR 4.07%), cassava (IGR 4.92%; CGR 4.80%), cocoa (IGR 2.61%; CGR 2.68 %), and palm oil (IGR 2.84 %; CGR 2.8 %), over the study period (1970-2007). Both compounded and instantaneous growth rates for all the crops were positive. The result indicates deceleration in the growth process for cassava, cocoa, maize and rice while stagnation in the growth process was observed palm oil within period of the study.

The coefficient of determinations R² of 0.86 indicates that about 86 percent of the total variations in Nigeria economic growth were explained by the variations in the independent variables. This shows that our model explains large proportion of variations in economic growth in Nigeria and also represents a good measure of fit. The F-statistic shows overall significance of the model. The F-statistic (3.94) is significant at 1% level of probability. We, therefore, reject the null hypothesis that the model is not significant in explaining the variations in economic growth. The result also revealed that there is a significant difference in the outputs of cassava, cocoa, maize and rice during the policy regime period that is (GR and SAP). Cocoa (-1.599) and maize (-0.355) had significant but negative effect on economic growth at 1 % level of probability while cassava (2.781) and oil palm (0.768) exhibited a positive and significant impact on economic growth at 1 % level of probability during the long run period. The coefficient of the error correction term (-0.249) is negative and statistically significant at 1 percent level. The negative and significant coefficient is an indication of co-integrating relationship between economic growth and its explanatory variables. However, the current year cassava, previous year's cocoa, current year palm oil have a short-run negative impact on economic growth during period of study whereas, previous year’s cassava, current year cocoa, previous year’s palm and current year rice had a short-run positive impact on economic growth during period of study.

CONCLUSION

The study examined the impact of agricultural policies program regime on the output of food crops in Nigeria from 1980-2015. Growth model was used to examine the trend in selected crop output. The study indicates deceleration in the growth process for cassava, cocoa, maize and rice while stagnation was observed in the growth process of oil palm within period of the study. The result specifically leads to the conclusion that output of cassava and rice had a direct influence on economic growth in Nigeria and also represents a good measure
growth in Nigeria from 1980 to 2015. Policy shift did not have any significant influence on economic growth.

RECOMMENDATIONS
Based on the findings, the recommendations were that; The slow process of growth in the output of cassava, cocoa, maize and rice could be enhanced by the use of evaluation and implementation of government policies. Again government should enhance continuity of policies and programme for sustainable development.

REFERENCES

