INFLUENCE OF PARENT MATERIALS ON THE PHYSICO-CHEMICAL PROPERTIES OF SOILS IN CENTRAL CROSS RIVER STATE, NIGERIA

M. E. NSOR and I. J. IBANGA

(Received 2 July 2007; Revision Accepted 11 September, 2007)

ABSTRACT

This study was designed to highlight the potentials of soils formed on diverse parent materials in Central Cross River State in order to enhance their management for increased productivity. Three profile pits were sited at the crest, middle slope and valley bottom topographic positions representing the different parent materials. Soil samples were collected, processed and analysed for physico-chemical properties according to standard procedures. The study indicated that sand content ranged from 82.3 to 81.3%, averaging 74.8% indicating that sandstone dominates shales and siltstone in the mixed parent materials. Sand fraction also dominated soils of basement complex origin averaging 69.3%. However clay was the dominant separate in soils developed on basement parent materials. Bulk densities averaged 1.47, 1.40 and 1.17 g/cm³ for surface soils and 1.56, 1.75 and 1.22 g/cm³ for subsurface soils from sandstone-shale-siltstone intercalations, basement complex and basement parent materials respectively. The study basically highlighted that soils formed on sandstone-shale-siltstone intercalation are moderately acid in reaction, low in organic carbon, total nitrogen, available phosphorous, exchangeable potassium and CEC, medium in exchangeable calcium and sodium and high in exchangeable magnesium. Basement complex soils are moderately acid, low in organic carbon, total nitrogen, available phosphorous, exchangeable sodium; medium in exchangeable calcium; high in exchangeable magnesium, poyassium and CEC whereas basaltic soils had low organic carbon, total nitrogen, available phosphorous and sodium; medium levels of calcium. CEC and base saturation; but high in magnesium and potassium. Based on these properties, soil conservation practices such as contour ploughing or ridging, organic mulching, proper fertilization and liming programme will make the highly erodible sandy loam and loamy soils developed on sandstone-shale-siltstone and basement complex soils more productive whereas proper fertilization liming and crop rotation are recommended in the basaltic soils for sustainable production.

KEY WORDS: parent materials, toposequence, soil conditioning and sustainability.

INTRODUCTION

Parent materials are considered an important soil - forming factor exerting a strong force that produces changes in soil properties. Esu (1999) identified parent materials as the most dominant soil - forming factor that contribute to differences in soil properties. Ezenwa (1987) showed that there exist significant differences in many physical and chemical properties between soil formed on basalt and basement complex rocks. Parent materials affect soil properties such as colour, texture, structure and nutrient status. A comparison of soils formed from the weathering of basalt and granite showed that most minerals present in basalt weathered into kaolinite, feric hydrous or feric oxide clays and some aluminium hydroxides. Such soil will be low in sand, high in clay and well structured. Granites on the other hand will weather much slowly and form soils high in fine sand, much of which is quartz and mixture of micaceous and kaolinitic clays, low in iron and less well structured (Russell, 1973). Albini (1985) noted that rocks differ greatly in their physical, chemical and mineralogical properties. Consequently, the weathered products derived from such rocks are themselves very different in their properties. The geology of Central Cross River State consists mainly of sandstone - siltstone intercalations, shale, and basalt (Anajor, 1989) Bultrade and Investment Company Limited (1989) reported that the geomorphology of Central Cross River State consists of dissected basement complex plains and pediments; level to gently undulating sandy coastal plains; steep sided hills of undifferentiated igneous and metamorphic rocks; undulating sandstone plains and ridges and dissected basement complex hills and pediments. It is expected that the soils of Central Cross River State with diverse parent materials will exhibit great variability in many physico-chemical properties. Knowledge of the variability in soil properties is very essential as this can affect crop production. A study of these variability trends with respect to parent material is essential in order to highlight the soil potentials and enhance their management for increased productivity. The objectives of the study were to evaluate the physico-chemical properties of soils formed on three parent materials in Central Cross River State and to recommend management practices that will enhance their productivity.

MATERIALS AND METHODS

This study was carried out in selected soils derived from three different types of parent materials in Central part of Cross River state, Nigeria. Central Cross River State lies between longitudes 6°00' and 9°10'E., and latitudes 5°20' and 6°20' N. It covers Yakurr, Abi, Obubra, Ikom, Etung and Boki Local Government Areas (Figure 1). The study sites were selected based on previous works of Ekweeme et al., (1995) and Bultrade and Investment Company Limited (1989).

The climate of the study area is uniformly hot, wet and humid. The area experiences great uniformity of temperature, which is always around 27°C (Petters and Ekwezes, 1982). The annual rainfall ranges from 1,800 to 2,800 mm. The relative humidity varies from 60-70% in January to 70-80% in July (Bultrade and Investment Company Limited, 1989).

Three profile pits were sited at the crest, middle slope and valley bottom topographic positions at each of the different parent materials studied. The soils investigated were derived from the sandstone-slate-siltstone intercalations, basement complex, and basalt parent materials.

Soil samples were collected for physical and chemical analysis. The bulk and particle densities of each undisturbed sample were determined by the cylindrical core method (Blake, 1985). The hydraulic conductivity was determined according to Klute's procedure (Klute, 1986). Particle size distribution was determined by the Bouyoucos hydrometer method (Klute, 1986). Soil erodibility index was estimated by evaluating the ratio of sand and silt contents to clay content (Hudson, 1996). Chemical properties were determined as follows: soil pH in a 1:2.5 soil:water suspension using glass electrode pH metre. Organic carbon by the dichromate wet oxidation method of...
Walkley and Black (Jackson, 1969); total Nitrogen according to the macro-Kjehdahl method (Jackson, 1969). Organic matter was calculated by multiplying values of organic carbon by a factor of 1.724; available phosphorus was extracted by the Bray No. 1 procedure (Bray and Kurtz, 1945) and estimated by the molybdenum blue color technique (Murphy and Riley, 1962); exchangeable cations were extracted by leaching the soils with 1 N ammonium acetate solution (pH 7.0) and the exchangeable K and Na contents in the extracts were determined using a flame photometer while exchangeable Ca and Mg were determined using the versenate titration method (Jackson, 1969). Exchangeable H and Al (exchangeable acidity) were determined by the titration method from an extract obtained using 1N KCl solution (McLean, 1966). The cation exchange capacity at pH 7.0 was determined using the NH4OAc method (Jackson, 1969), while the effective cation exchange capacity (ECEC) was obtained by summing up the exchangeable bases and exchangeable Al and H. The base saturation was determined using the relationship:

$$BS(\%) = \frac{\sum (Exch \ Bases)}{\sum Exch. \ Bases + Exch. \ Acidity} \times 100$$
RESULTS AND DISCUSSION

Physical Properties

Particle size distribution

Sand is the dominant fine earth fraction in the soils studied. The sand content ranged from 62.3 to 81.3% and averaged 74.8%, indicating that sandstone dominates shale and siltstone in the mixed parent material (Table 1). Similarly, the sand fraction dominated in the soils formed on basement complex parent materials and range from 40.3 to 82.3% (averaging 69.3%). This agrees with the findings of Ritter (2006) who remarked that soils developed on coarse-grained parent materials with minerals resistant to weathering are likely to exhibit coarse-grained textures whereas fine-grain soil developed where the parent material contain minerals that readily weather. Furthermore, the soils developed from basement complex and sandstone -shale-siltstone parent materials had almost the same content of silt fraction, both averaging 17.4% (Table 1).

Clay separate dominated all the soils developed on basalt parent materials and were in the range 19.7 to 67.4% averaging 53.8% (Table 1). The dominance of clay in these soils is attributable to the weathering of basalt into secondary clay minerals which are low in sand and are well structured (Russell, 1973). The dominant texture in these soils was loamy sand overlying sandy loam subsoil. Basement complex soils had a higher content of clay particle especially in the sub-soil than soils formed on sandstone-shale-siltstone parent materials.

The high sand content in the soils of basement complex and sandstone-shale-siltstone parent materials suggest that these soils will be low in nutrient reserves, water holding capacity and poorly structured. Consequently, the basaltic soils will be high in nutrient reserves, water holding capacity and of good structure due to its high clay content (Brandy, 1974). This textural characteristics will require specific management techniques to enhance their productivity.

Bulk density

Bulk density was generally high in soils formed from sandstone-shale-siltstone intercalations and basement complex parent materials averaging 1.47g/cm³ and 1.40g/cm³ for surface soils and 1.56g/cm³ and 1.75g/cm³ for sub-soils respectively (Table 2). However, lower values were obtained for soils formed from basalt parent materials, which averaged 1.17g/cm³ and 1.22g/cm³ for surface and sub-soils respectively. These low density values obtained in soils developed from basalt was due to their low sand content whereas the high value of bulk densities in soils formed from sandstone-shale-siltstone intercalations and basement complex parent materials were due to the high sand contents which usually exert greater weight per soil volume. Generally, sub-soil had higher values of bulk density than surface soil due to compaction arising from trampling and overlying weight of surface soil (Russell, 1973).

Particle density

Particle density showed similar trends like bulk density. Particle densities for soils developed from sandstone-shale-siltstone and basement complex averaged 2.93g/cm³ and 2.79g/cm³ for surface soils and 3.11g/cm³ and 3.48g/cm³ for sub-soils respectively (Table 2).

Hydraulic conductivity

Hydraulic conductivity was high in the surface soil and sub-soils formed on sandstone-shale-siltstone and Basement complex parent materials averaging 116.45cm/hr and 65.73cm/hr and 100.93cm/hr and 57.30cm/hr respectively but low in basaltic soils averaging 87.67 cm/hr and 55.13cm/hr for surface and sub-soils respectively. The high proportion of macro-pores in soils of sandstone-shale-siltstone and basement complex origin arising from their high sand content was responsible for the high hydraulic conductivity values in these soils.

Soil Erodibility

Soil developed on Basement complex and sandstone-shale-siltstone intercalations were generally highly erodible with a erodibility indexes averaging 23.8 and 5.2; and 23.1 and 7.1 for surface and sub-soils respectively. Soil developed on basaltic soils have erodibility index averaging 1.5 and 0.7 for surface and sub-soils respectively. The low erodibility index in basaltic soils is due to their high clay contents, thus making them very stable and less susceptible to erosion (Hudson, 1995).

CHEMICAL PROPERTIES

The results of chemical properties are presented in Table 3. The soils are very strongly to moderately acidic in reaction (pH 4.74-5.98). The low pH values of these soils is due to extensive leaching of exchangeable cations leaving behind hydrogen ions and subsequent hydrolysis of aluminium ions into hydroxyls and hydrogen ions (Amalu, 1998).

Organic carbon contents ranged from 1.4 to 9.1g/kg; 1.4 to 14.1g/kg, and 3.6 to 19.9g/kg averaging 4.41, 6.40 and 5.60g/kg in soils formed from sandstone -shale-siltstone intercalations. Basement complex and Basalt parent material respectively. This indicated that organic carbon content is low in the study area.

Total nitrogen contents ranged from 0.1 to 0.7g/kg; 0.1 to 1.2g/kg and 0.4 to 1.5g/kg averaging 0.4, 0.5 and 0.8g/kg for soils formed on sandstone-shale-siltstone, Basement complex and Basaltic parent materials respectively. Total nitrogen content in all the soils studied was also recorded low. The low organic carbon and total nitrogen contents observed are attributable to the extensive leaching induced by the high rainfall experienced in the study area (Jones, 1973).

Available phosphorus was low in all the soils studied (Table 3). Averages of 3.30, 3.52 and 2.96mg/kg were obtained for sandstone-shale-siltstone, Basement complex and Basaltic soils respectively. The low content of available phosphorus is due to phosphate fixation or adsorption by ligand exchange, enhanced under strong acid soil condition arising from high rainfall experienced in the study area (Russell, 1973; Amalu, 1998).

Exchangeable calcium content was medium in all the soils studied averaging 2.9, 4.2 and 3.2 cmol/kg for soils formed from sandstone-shale-siltstone, Basement complex and Basalt parent materials. Magnesium was high in all the soils averaging 1.4, 1.2 and 2.6 cmol/kg for soils of sandstone-shale-siltstone, Basement complex and Basalt origin respectively. Potassium was low in soils developed from sandstone-shale-siltstone intercalations and Basement complex soils averaging 0.13 and 0.15 cmol/kg respectively but high in Basaltic soils averaging 0.70 cmol/kg (Table 3). Sodium was rated medium in soils of sandstone -shale-siltstone and Basaltic complex origin but low in Basaltic soils. Variations in exchangeable bases in the soils from these three parent materials is the direct consequence of the differences in clay contents furnishing negative charges for the adsorption of these cations (Ahn, 1970). Cation exchange capacity (CEC) was rated medium in Basement complex and Basaltic soils averaging 6.36 and 6.35 cmol/kg respectively but low in soils developed on sandstone-shale -siltstone intercalated parent materials, averaging 4.5 cmol/kg. The medium CEC in Basement complex and Basaltic soils is due to their high contents of clay, resulting in enhanced colloidal activity unlike the sandstone-shale-siltstone parent materials with low clay contents. Clay content increases with retentation in soils (Russell, 1973).

Values of percent base saturation were generally medium in soils of Basalts and sandstone-shale-siltstone intercalated origin but low to medium in soils formed on Basement complex parent materials.
<table>
<thead>
<tr>
<th>Soil Depth</th>
<th>Main Component</th>
<th>% Clay</th>
<th>% Silts</th>
<th>% Sands</th>
<th>% Organic Matter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 cm</td>
<td>sandy clay loam</td>
<td>31.2</td>
<td>23.4</td>
<td>45.4</td>
<td>2.91</td>
<td>V1</td>
</tr>
<tr>
<td>10-20 cm</td>
<td>sandy clay loam</td>
<td>29.8</td>
<td>24.6</td>
<td>45.6</td>
<td>2.85</td>
<td>V1</td>
</tr>
<tr>
<td>20-30 cm</td>
<td>sandy clay loam</td>
<td>28.3</td>
<td>25.8</td>
<td>45.9</td>
<td>2.80</td>
<td>V1</td>
</tr>
<tr>
<td>30-40 cm</td>
<td>sandy clay loam</td>
<td>26.9</td>
<td>27.2</td>
<td>45.9</td>
<td>2.75</td>
<td>V1</td>
</tr>
<tr>
<td>40-50 cm</td>
<td>sandy clay loam</td>
<td>25.5</td>
<td>28.6</td>
<td>45.9</td>
<td>2.70</td>
<td>V1</td>
</tr>
<tr>
<td>50-60 cm</td>
<td>sandy clay loam</td>
<td>24.1</td>
<td>30.0</td>
<td>45.9</td>
<td>2.65</td>
<td>V1</td>
</tr>
<tr>
<td>60-70 cm</td>
<td>sandy clay loam</td>
<td>22.7</td>
<td>31.4</td>
<td>45.9</td>
<td>2.60</td>
<td>V1</td>
</tr>
<tr>
<td>70-80 cm</td>
<td>sandy clay loam</td>
<td>21.3</td>
<td>32.8</td>
<td>45.9</td>
<td>2.55</td>
<td>V1</td>
</tr>
<tr>
<td>80-90 cm</td>
<td>sandy clay loam</td>
<td>19.9</td>
<td>34.2</td>
<td>45.9</td>
<td>2.50</td>
<td>V1</td>
</tr>
<tr>
<td>90-100 cm</td>
<td>sandy clay loam</td>
<td>18.5</td>
<td>35.6</td>
<td>45.9</td>
<td>2.45</td>
<td>V1</td>
</tr>
</tbody>
</table>

Table 1: Particle size distribution of representative profiles of soils derived from diverse parent materials in Central Cross.
<table>
<thead>
<tr>
<th>Designation</th>
<th>Conductivity cm/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtration</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mean</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Median</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Sp. Density</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Porous Density</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 2: Physical Properties of Soils derived from diverse parent materials in Central Cross River State

Note: The table presents physical properties of soils related to conductivity and density measurements. The data is organized to show variations across different designations, with clear indications of mean and median values for each parameter.
<table>
<thead>
<tr>
<th>Sample</th>
<th>pH (H2O)</th>
<th>ECmhos/cm</th>
<th>ECE</th>
<th>CEC</th>
<th>Exchangeable Ca</th>
<th>Exchangeable Mg</th>
<th>Exchangeable K</th>
<th>Exchangeable Na</th>
<th>Organic Carbon</th>
<th>Total N content</th>
<th>Horizons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.0</td>
<td>0.6</td>
<td>110</td>
<td>210</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Horizon A</td>
</tr>
<tr>
<td>2</td>
<td>7.2</td>
<td>0.6</td>
<td>110</td>
<td>210</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Horizon B</td>
</tr>
<tr>
<td>3</td>
<td>7.4</td>
<td>0.6</td>
<td>110</td>
<td>210</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Horizon C</td>
</tr>
</tbody>
</table>

Table 2: Chemical properties of representative profiles of soil formed on diverse parent materials.
CONCLUSION AND RECOMMENDATIONS

Soils formed from sandstone-shale-siltstone intercalations and Basement complex parent materials are moderately deep to deep whereas those developed from Basalt are deep to very deep. Clay particles dominate soils developed from Basalts in Central Cross River State. On the other hand, sand and sandstone-shale-siltstone intercalations. The soils fraction dominated soils developed on Basement complex studied were generally high in bulk and particles densities except those developed from Basalts. Hydraulic conductivity was also high in soils formed from sandstone-shale-siltstone and basements complex soils but low in those formed from Basalt. Basement complex and sandstone-shale-siltstone soils were rated highly erodible, whereas the Basaltic soils had low erodibility.

Among the soils studied, those formed on sandstone-shale-siltstone intercalations are moderately acid in reaction; low in organic carbon, organic matter total nitrogen, available phosphorus, exchangeable potassium and cation exchange capacity; medium in exchangeable calcium and sodium; high in exchangeable magnesium. Basement complex soils are moderately acid; low in organic carbon, total nitrogen, available phosphorus, exchangeable sodium and calcium; high in exchangeable magnesium, potassium, and cation exchange capacity.

Based on these properties, the following management practices are recommended for profitable crop production in soils developed on the different types of parent materials in Central Cross River State.

- Soil conservation practices such as contour ploughing or ridging and organic mulching will make the highly erodible sandy loam and loamy sandy soils developed on sandstone-shale-siltstone and Basement complex soils more productive by reducing erosion risk and improving its water holding capacity.

- Split fertilization/liming programmes will make the sandstone-shale-siltstone and Basement complex soils prone to leaching, respond positively to applied soil amendments.

- The establishment of vetiver grass hedges or strips in between cultivated crops will improve soil structure and reduced erosion hazard in the highly erodible soils developed on sandstone-shale-siltstone and Basement complex parent materials.

- The incorporation of organic manure into the soils of sandstone-shale-siltstone and Basement complex origin will improve their nutrient reserves and available moisture for enhanced crop production.

- Basal fertilization programmes especially of primary nutrients (Nitrogen, phosphorus and potassium) and proper liming to reduce soil acidity will make Basaltic soils highly suitable and productive.

- A four course crop rotation in the sequence: cowpea/maize, melon/cocoyam, groundnut/cassava, fallow is considered most suitable and appropriate for Basaltic soils.

- The deep to very deep soils developed on Basalts will support plantation crops like cocoa, avocado, mango, African pears with banana and plantains serving as nurse crops.

- The installation of irrigation facilities (drip irrigation) in Basaltic soils area will enhance their capacity to sustain arable cropping especially of high value crops (Cucumber, water-melon, egg plant, vegetable etc) all year round.

REFERENCES

Klute, A., 1986. Methods of soil Analysis, part 1, N0. 9 (2nd ed.) physical and mineralogical properties. American Society of Agronomy, Madison, Wisconsin, USA.

