together fo achieve system objectives

" ensure a Fault Tolerant System.

GLOBAL JOURNAL OF ENGINEERING RESEARCH VOL. 6 NO.% 2007: 31 - 38
COPYRIGHTO BACHUDO SCIENCE CN. LTD PRINTED iN PRCERIA. ISSN 1596 ~ 282X

DESIGN AND PROPERTIES OF A FAULT TOLERANT MULTIFRG

SYSTEWM

M. E. EKPENYONG, N. M. UMOH and E. E. EKONG

(Received 15 May, 2006, Revision Accepted 4 July.

20063

ABSTRACT

The main aim of this paper is to report on the design of a Multiprocesser System, which consists of a number of ide

processors connected to a8 eomimon store This system will continue to function afier a hardware fault due to the malfunclion of a

single processor

properties to the Dual-Bus Multprocessor Organization

In this design. both the hardware and software aspects of the reliabiity problem have been consider
Solutions have also been proffered to other system tolerance probiems ansing from other kinds of falures by propasing addiong!
A Scheduling State Traristion diagram s construcled and & soflwgre

i

design for our FTMS is also presented. Both the hardware and software aspect of this design were tested Test resuit showed that
a complete breakdown or failure of systems could be temporarily masked

KEYWORDS: Design Diversity, Standby Spares, Exception Handling. Communication Path, Synchromzation Schaeme.

INTRODUCTION

Systems are made up of subsystems. which work
The cost of system
failure is enormous it therefore becomes imperative that we
design and build systermns that will continue to be operational
despite the malfunctioning of a subsystem In this paper. we
are considenng a multiprocessor system,
operation of the syster will switch over to a standby spare due
to the failure of the default. The objective of this hardware
management or short term scheduling is to allocate physical
resources to processes as soon as they become available.
The design aims to maintain good utilization of processors or
equipment and to simuiate a virtual machine for each process
and a set of primitives, which enables concurrent processes to
achieve mutual exclusion of crit:cal regions and communicate
with one another

The aim for tolerating a single processor failure is to
allocate the primary and backup copies of a task to two
different processors such that the backup copy subsequently
executes if and only if the primary copy fails to complete due to

- processor failures. Not all backups need to execute, even in

the presence of a single processor fallure Since only tasks
allocated to the failed processor are affected and need therr
backup copies to be executed, certain backup copies can be
scheduled to overlap with one another

Fauit Tolerance - Update

Laprie et. al. (1995) define Fauit Tolerance as how to
provide, by redundancy, service. complying .with the
specification in spite of faults having occurred or occurring.
They argue that fault tolerance 1s accomplished using
redundancy. This argument is good for errors, which are not
caused by design faults. Design- diversity has increased the
pressure on the specification of multiple variants of the same
equivalent specification to aid programmers in creating vanant
algorithms for necessary redundancy.

Gray (1991) estimates that 60-90% of current failures
are Software failures which implies that a larger focus on
software reliability and fault tolerance is necessary in order to
In his discourse on Software
fault tolerance, he described the nature of the Software

. broblem, Current methodologies for solving the problems, and

offered some thoughts on future research directions.

DeVale et al(1999) and Knight et al(1986) in their
researches held the view that Software errors may be
correlated in N-Version Software systems The researches by
Knight{(1986) are case studies, and may not provide an in-

in which the ..

depth account on Software Systems to enable us draw a
conclusive result
Storey (1996) in his paper remarked thal it s
important to understand the nature of the problem that
Software Fault Tolerance sets out to soive and conciuded that
“Software Faults are all design taults ”
The traditicnal Hardware

Fault Tolerance was

g desrgned to conquer manufactunng faults environmental anc

other secondary faults. Design diversity was not an apphad
concept to Hardvsare fault tolerance solution At this point, N-
way redundznt systemns solved many simple erors by
replicating the same hardware. DeVale(1999) has provided
evidence on Design diversity and independent falure modes,
which have been shown to be a very difficult problem

The difference between Faull Tolerance ang
Exceptional Handling 1s that Excephional Handing diverges
from the specification while Fault Tolerarce attempts o
provide acquescent services with the specification after
detecting a fault

The techmques of Fault Tolerance fall into two
categones' Software defence and Protective redundancy For
systems, wmch must be available without interruption, the
system must dynamically reconfigure itself (Sommervilie.
1995) The replacement must substitute the faulty component
without stopping the system. Both-hardware and sofiware fault
tolerances are beginning to face new class of problems of
dealing with design faults. Inacio (1998) is of the opinion that
Hardware designers w soon face how to create a
microprocessor that effectively uses one billion transistors, as
part of this task. building a correct microprocessor becomes
more of a challenge

Fault-tolerance 1s considered in the design of real-
time scheduling algorithms to make systems more reliable
[Liberato et. al. (1999), Alvarez et. al. (1959)]. Liberato et. al.
(2000) propused a feasibility-check algorithim for fault-tolerai.t
scheduling. The well known Rate-Monotonic First-Fit
assignment algorithm was extended in Alan et al. (1899) A
delayed scheduiing algonithm using passive replica was
developed in Ahn et al (1997) Caccamo et al (1998)
presented a scheduling aigonthm for hybrid task sets
consisting of hard periodic tasks However, both of the above
algonthms assume that the undelying system s
homogeneous. Qin ef al (2003) investigaied an efficient off-
line scheduling algonthm for real time tasxs with precedence
constraints irr a2 heterogensous envirenment. The papei
provides more features and capabilities than exisling
algonthms that schedule only independent tasks w real time
heterogeneous systems. The proposed aigorithm in addition,

FA. E. Ekpenyong, Dept. of Maths, Stats. and Computer Science..University of Uyd, P M B. 1017, Uyo, Akwa Ibom State, Nigena
N. M. Umoh, Dept. of Maths, Stats and Computer Science, University of Uya, P M B 1017. Uyo, Akwa lbom State, Nigaria
E. E. Ekong, Dept. of Maths, Stats. and Computer Science, University of Uyo. P M B 1017 Uyo. Akwa ibom State. Nigena

32

M. E, EKPENVONG, N. M. UMOH and E. E. EKONG

takes heterogeneities of computation, commurnication ard
reliability into account, thereby improving the reliability

Shost-Term Scheduling

This aims to explain how concurrent processes are
scheduled on a computer with one or more entical
processors connected on a single internal store as showrx in
Fig 1

Processor | Processor 2 Proge

il

Common Store

Proce;

bh

Fig.1: Identical Processors connected to 8 common store

The number of concurrent processes can excesd the number
of processors, but the store is assumed to be large enough to
satisfy all concurrent processes at any given time
HARDWARE REQUIREMENT
Let ue start by posing two guestions that will guide us
N our design
Q1. If a processor fals dunng computation (afier
allocation of operations), how would we reschedule
the process handled by the failed processor?

Assuming no process shares the result of
computation.
Q2. If another processor requires the result of a failed

processor before it starts or before it completes its
operation, how would we handle such a situation to
avert error?

For the first question, i is assumed that each sub operation -
has equal priorty, where time becomes a scheduling facter

in the second question, the starting operation that wili
hand-over its result has the highest pnority

Before answering these questions in detail, let us
review the varior” hitectures of multiprocessor systems

Multiprocessar o, em Organization

A Mulbiprocessor system is an interconnection of two
or more CPUs shanng common memory and Input-Output
equipment. The term "Processor” in Multiprocessor can mean
either g Central Procassor Unit (CPU) or transport Processor -
inpu/Cutput Processor (I0P). However, a system with a
single CPU and one or more 10Ps is not usually included i a
multiprocessor definition unless the IOP has computatonal
facilities comparable to the CPU.

Four nterconnaction schemes ewist Mulliport
Memory, Crossbar Switch, Time-Shared Common Bus and
Dual-Bus Structure We shall briefly discuss these
organizations to enable us choose a swtable design

A RMuttiport Memory System employs separate buses
between each memory module and each CPU or IOP This s
shown i Fig 2 for four CBUs and four memory modules {rmm)
Each memory bus s connected to s processor tus

in this orgarization. memory access conflicts are
resolved by assigning fixed prionties to each memory port
The pronty for memory access associated with each
processor may be established by the physical port position that
its bus occupies in each module. Thus, CPU4 would have
priorityiover CPU3 and CPU3J «wi't have priority over CPU2 and
with CPU1 having the least prionty This design s not

comfortable for our case since there 18 NO COMMLN MEMOry

Tz] [)

(mimd]

for A Multiprocessing Organization *

[mm| !
crui i}
CPU2 }
CPU3 Ji
T Fig. 2. Multport Memo
CPU4 1

The Crossbar Switch Organization consists of a number of
cross points, placed at intersections between processor buses
and memory module paths. Fig. 3 shows a crossbar switch

interconnection between four CPUs and four memory
modules

s ! mnil l

L (Lmnﬁ] [wmmé& I

CPUL l

oty

C PUEWJ

e

U3 |
cPU3 |

CPU4 j

Fig. 3. Crossbar Switch for a Muliprocessor Organization

The organization in fig. 3 alsc res solves multiple requests for
access to the same memory module on a predetermined
priority basis. This organization, supports sitnultaneous

P V]

s

fransfers from all memory modules. However, the hardware
required to implement the switch can be quite large and
complex

DESIGN AND PROPERTIES OF A FAULT TOLERANT MULTIPROCESSOR SYSTEM 33

Common Bus Muiltiprocessor System consists of A
number of processors connected through a common path to a
memory unit. A Time-Shared Common Bus for four

processoré is shown in Fig. 4 Only one processor can
communidate with the memory at any given time.

Memory Unit

CPUI CPU2

CPU3 CPU4

Fig. 4: Time-Shared Common Bus Multiprocessor Organization

Here, the processor that is in control of the bus at the time
conducts transfer operations. Any other processor wishing to
initiate a transfer must first determine the availability status of
the bus. The system may exhibit memory access conflicts
since one common bus is shared by all processors. Memory
contention must be resolved with a bus controller that
establishes priorities among the requesting units.
The design in Fig. 4 can either be tightly coupled or
loosely coupled.
A question now arises:
Q3. Assuming a processor while in operation collapses or
fails, how would we recover to a great extent, its
status?

The Time-Shared Common Bus Multiprocessor
Organization fails in this question because, if a recovery is to
be made after the failure of a processor (during computation),

it is only the assignment status that will be recovered (that
defined in the process description table before processing
started). Since computation was not complete, temporal
results could have been lost. However, it is not a good practice
for processors in this design to communicate the common
memory so often to store temporal results, since contention
may result and communication speed can be unnecessarily
slowed.

A single common bus system is restricted to one
transfer at a time. This implies that when one processor is
communicating with the memory, all other processors are
either busy with internal operations or must be idle waiting for
the bus. The processors in the system can be kept busy more
than often through the implementation of a Dual-Bus Structure
as shown in Fig. 5. Here, we have a number of local buses
each connected to its own local memory and to one or more
processors.

l.ocal Bus
Common Shared System Bus CPU1 Local
Memory Controlier Memory
System Bus
[1
System Bus CPL2 Local System Bus CPU3 Local
Controlier ot Memory Controller Memory
Local Bus Local Bus

Fig. 6: Dual-Bus Multiprocessor Organization

34 -

M. E. EKPENYONG, N. M. UMOH and E. E. ERUNU

This design eases the problems of the previous designs.
Memory contention is reduced by assigning the longer running
processes to specific processors by copying their instructions

and data to the local memory of those processors, while -

communication speed can be kept high by exchanging
information through the common store (Mano, 1982).

The answer to Q3 is now feasible. since each
processor can store temporarily. the results of its computations
in its local memory and if it incidentally fails, its local memory
can be recovered or retrieved and handed over to a free
processor to complete. A recovery program resident in the
common shared memory can accomplish this. The
organization in Fig. 5 will be used for our design of a fauit
tolerant multiprocessor system.

SOFTWARE REQUIREMENT

Fault-Tolerant Software is Software that continues to
give correct outputs despite occasionat failures in hardware or
in parts of the software.

Fauit-Tolerant Software design is based on the
concepts of Software redundancy. A software module
(procedure, function) is redundant if it performs a function
identical to some other software module. Design of a Fauit-
Tolerant system is carried out by carefully placing redundant
software modules at critical points in the system so that a
failure by a primary module can be recovered and corrected by

a redundant standby spare or backup module. We shall in the
next section (Software aspect) develop a scheduling algorithm
that schedules real-time jobs witri dependent tasks at compiiz
time

COMPONENTS AND METHODS

HARDWARE ASPECT
Our Fault Tolerant Multiprocessor System is that

which despite a malfunction of a single processor continues to

function

To ensure an efficient Fault Tolerant Multiprocessor
System, Anderson & Lee(1981) suggested that we also guard
against other kinds of failures such as: intermittent hardware
faults by the provision of multiple hardware modules
(processes with some private memory, main memory modules;
buses; input/output access logic).

From these suggestions we here suggest the
following components and have come up with a modified
design of the Dual-Bus Multiprocessor Organization:

i. Bus guardians in case a bus line fails;

ii. Free processors and memory moduies pool to serve
as standby spares in case a processor or a local
memory fails. “

ii. A control switch to (switch) control to the guardians or
spares.

Pool of tree Processors and Memory Modules

Common Shared Free Free Free Free
Memory . Processor Processor mm mm
System Bus — — Guardian . stem B I
Controtlor T LTINS TN :
System Bus
| A]
G
System Bus CPUI Local System Bus CPU2 Local
Controller Memory Controller Memory
? S .
Local Bus Local Bus

Fig. 6: Construction of a fault tolerant multiprocessor system using suggested components. The dotted lines and shaded

units represent guardians.

DISCUSSION

With our current design, guardians can take over data
transmission whenever the main bus line fails. A control
switch represented by the symbol (-0-) is used to disable a
failed line and enable a guardian. With this technique, faults
can be masked temporarily. The switch becomes enabled
after rectification of the fault.

Also, with a backup of the Common: Shared Memory
to a free Memory Module in the pool (periodic auto-backup),
this design will mask the Common Shared Memory, even
when it fails. The system can be programmed to switch
control and use the free Memory Module as the Common
Shared Memory.

Our current design is a dynamic system, and we must
ensure proper communication amongst processors. To obtain
this, a communication path needs be established through
common input-output channels. The most common procedure
is to set aside a portion of the memory, which is accessible to
all processors. The primary use cf the common memory is to
act as a message centre, similar to a mailbox, where each
processor can leave messages for other processors and pick
up those, which are intended for it.

The sending processor structures a request, a'
message, or a procedure, and places it in the mailbox. The
status bits in common memory are used to indicate the
condition of the mailbox, whether it has meaningful information
and for which processor it is intended. The receiving processor
can check the mailbox periodically to determine whether there
are valid messages for it. The response time of the procedures

35

M. E. EKPENYONG, N. M. UMOH and E. E. EKONG

can be significant since a processor will recognize requests
only when it does its next polling of messages. A better
procedure is for the sending processor to alert the receiving
processor directly by means of an interrupt signal. This can be
accomphshed through a software initiated inter-processor
interrupt and can be done by an instruction in the program of
one processor which when executed, produces an external
hardware interrupt signal in a second processor. This alerts
the interrupted processor of the fact that a new message was
inserted in memory by the interrupting processor.

To ensure mutual exclusion in our current design, a
sequential switching circuit, called arbiter s needed to
guaranty that at any instant in time, either tre central
processor ar a peripheral device, but not both, can access the
internal store to read or write a single word If processors try to
overlap their access, the arbiter enables one of them to
proceed and delay the rest for a few micto seconds it takes to
access the store. ~

So, the machine instructions load- and store are

&

implemented as critical regions
var store; shared array index of words;

MATl ROX

address: index; register: word;

region store do register: = store (address),

region store do store(address): = register; :

Apart from the above hardware scheduling of access
to single store words, there should be another arbiter to which
all processors are connected. This arbiter with two machine
operations (enter and leave region) implements the hardware
aspect of critical reglons performed on process descriptions
and queues.

CONSTRUCTION OF THE STATE TRANSITION DIAGRAM

Since we are considering the design at the lowest
level of programming, i.e. at the descriptive level or
architectural level, we here, construct a State diagram. that will
maintain a good utilization of the equipment and ensure Fault
Tolerance. We have assumed three processors CPU1, CPU2
and CPU3 with a common shared memory (though each
processor has its own local memory). CPU3 requires the
result of CPU2 to complete processing. :

Fxeeeded time hinat

S —— :

Low prionty \\\ L
ready

w6l L bhonnds " 3

e Ry

Run tor allotted tme

\ Run tor |
i allottedtime !

Request

i | auli

¢ Run for allotted time

Medium-priorty

CPU2 completed

Request

terminal CPL'3

/Wan for temunat CPL 3

3

High-prionty “Ne
‘ ready //

: CPU3 completed

CPU3 completed

CPUI completed

Fig. 7: Scheduling State Transitions for our FTMS Design in Fig. €.

We have subdivided the ready and wait to further
control the allocation of processes. The running state indicates
the message centre which coordinates the control operations
(evaluate messages and resuits). This scheduling diagram is
a simplification of a desired policy that might be used in a
timesharing (common store) multiprocessor system. The
scheduling policy is to select a process from the high-priority
ready list; if there is none, a process is selected from the
medium priority ready list. A low priority process is only run if
there are no high priority processes.

A fault may result from a hardware or software
malfunction and a wait for recovery may mean a change to
standby spare(s) or reallocation of job(s) when a failure
occurs.

The dotted arc and line from the wait for recovery
state represent recovery transitions. A recovery transition 1s a
process where the system uses the spare(s) to finish
uncompleted task(s).

SOFTWARE ASPECT

Inacio (1998) has discussed the current methods for
software fault tolerance These methods include Recovery
blocks, N-Version programming, and Self-checking software.

The Recovery block and the Self-checking Software
schemes will introduce complications to our design. The
Recovery block method increases the pressure on the
requirement to be specific enough to create different mulitiple
alternatives that are functionally the same and the cost in tme
of trying multiple alternatives may be too expensive, especially
for real time systems. This method requires that each module
build a specific adjudicator and the decider. Self checking
software is not discussed rigorously in literatures, but it 1s
rather a more ad hoc method used in some important systems
These Software have been implemented in some extremely
reliable and safety-critical systems already deployed in our
society. They include the Lucent ESS-5 phone switch and the
Airbus A-340 airplanes (Lyu,1995). Another hindrance of Seif

DESIGN AND PROPERTIES OF A FAULT TOLERANT MULTIPROCESSOR SYSTEM 36

checking Software 1s that the code coverage for fault toleran
system is unknown

We recommend the N-Version programming method
for our design. This method employs a majority-voting
scheme The reason for this recommendation 1s that, we can
use redundant processors to generate copies of identicai
inputs. If one or more of the inputs have errors in them, we
take the input computed by the majority of the processes and
discard the other inputs.

The number of faults that can be tolerated without
computing incorrect resuits can be defined as a function of the
number of redundant processes Np.

Number of fauits tolerated < floor((N, — 1)/2); Ny 2 3.

Given 6 redundant processes, each executing identicai
program and using exactly identical data, then the correct
answer will be obtained even if floor((6-1)/2) = 2 processors
fail

Suppose P,, P,,..., P, are processes computing a
single result for an algorithm. Let Ry, Rz, ...Rn be the values or
results returned by Py, P2, ... Py, respectively Then. If the
results are binaries and let * denote a logical and, and + a
logical or, we have:

Majority result = (P1*P2+P1*Py + + Py " Po)+ (P" Py + P
*Ps+ + Po*Po)+ +Pay* Py

The N ~ Version Programming Method

While the recovery block method requires that each
modute bullds a specific adjudicator, the N-version method
uses a single decider, which we shall refer to here as a driver
This concept attempts to parallel the traditional hardware fault
tolerance concept of N-Way redundant hardware. Here each
module is made up with N-way different implementations. We
shall apply the scheme proposed by Chen and Avizienis
(1978) in the implementation of the software aspect of the
reliability problem in multiprocessor systems.

The scheme states as follows.

a. Let a program driver invoke each of the versions
(program versions)

b. Let the driver wait for the processors to complete their
evaluation or execution, and

cC. Let the driver compare and act upon the N sets of
results

To ensure the implementation of the above scheme.
mechanisms are required to synchronize the actions of the
driver and the versions and to communicate outputs from the
versions to the dnver. The scheme also requires that each
version be executed atomically and have access to the same
input space.

A synchronization mechanism can be implemented
based on the use of wait and send primitives. The versions
wait and do not commence processing untii a send is
executed by the driver. Similarly, the driver waits until send
responses are received from all N versions to indicate that
their outputs are complete. The voting check on the received
outputs can then be evaluated. There s need for
multiprocessor systems to contan a complex
synchronization scheme, to ensure that the executions of the
versions on multiprocessors do not get out of step.

The hardware requirement to implement this design
successfully has been met by our design. Each version could
be executed in parallel on independent processors. The driver

FTMS Algorithm

program should be resident in the common shared memory to
control communication, such that after the computation by
each independent processor, results are routed to the shared
memory for evaluation, where the mailbox serves as a
message sender and recelver

Each version during execution must have access o
an identical set of input values by being given access right to a
read-only, shared, global structure.

Only limited experiments with N-Version
Programming have been undertaken. The simple reported
experiments (Avizienis & Chen, 1977; Chen & Avizienis, 1978)
consisting of running sets of student programs as 3-Version
programs on an IBM 360/91, were of a mixed nature The
scheme worked for some sets of programs and unfortunately.
other combinations of programs failed to provide the required
tolerance and in one case, a version caused the Operating
system to abort the execution of the 3-Version program of
which 1t was a part. This notwithstanding, N-Version
programming remains (at the present stage of the
investigation) an interesting and potentially effective approach
to Fault Tolerance.

Software Design (Algorithm).

We here present an algorithm that schedules real
time jobs with dependent tasks at compile time The
objectives of the algorithm are

1 Total schedule length reduced so that more

tasks can be completed before ther dead
lines,

2. Permanent failures in one processor being

tolerated.

3. The system reliability being enhanced by

reducing the overall reliability cost of the
schedule.

Before developing the FTMS algorithm, let us
consider some definitions of notation.

NOTATIONS DEFINITIONS

D(x) The set of predecessors of task x. D(x) = {x \(xi,x) ¢ E}

S(x) The set of successors of task x, S(x) = {xi\(x,xi) ¢ E}

F(x) The set of feasible processors of which x® can allocated

B(x) A set of predecessors of x's backup copy

XQi The queue in which all tasks are scheduled to

pi.s(xq+1)=x.and f(x0) = 0.

Xqi'(x) The queue In which all tasks are scheduled to pi. and
cannot overlap with the backup copy of task x. where
s(xq+1)=~, and f(x0) = 0

The earliest available time for the primary or

backup copy of task x if message e sent

from v;eD(x) represents the only

precedence constraint.

EATI®(x) MIN(xj" € D(x")) {EATi(x x")}

EATi®(x) MIN(xje D(x®)) {EATI(x® x})}

ESTiP(x) Earliest start time for the primary copy of x
on processor pi.

ESTiB(x) Earliest start time for the backup copy of X on

processor pi.

MIN(picP) (ESTi(x")}

MIN(picP) {EST(x®)s

EATI(x,x])

EST®(x)
EST(x)

1. sort tasks by deadlines in accending order, subject to precedence constraints, and generate an ordered list

OL;

2. for each task x in OL, observing the order, schedule primary copy x° do

21 S(Xp) « o ; rc « oo, Xqi = NULL,

22 for each processor pi do /*determine whether task x should be allocated to pi*/
I*calculate ESTi’(x), where Xqi = {x1,x2,...,xq} is the queue where all tasks are scheduled to pi, s(xq+1) = =,

and f(x0) = 0%/

37 W, C. ERi“ENYONG, N. M. UMOH and E. E. EKONG
2.2.1 for (j=0to q+1) do /*compute the EST ot » o 0"/
if s(x)+1) = MAX{f(xj).EAT"(x)} > ci(x) then /*check If unoccupied
time intervals interspersed*/
ESTi"(x) = MAX{f(xj). EAT’(x);
end for

2.2.2 if x’ starts executing at ESTi’(x) and can complete before d(x) then /*

determine the reliability cost of x” on pi;

determine ESTi*/

if ((rci<rc) or (rci=rc and ESTi’(v)<s(x"))) then /*find maximum rc*/
$(x°) « EST®(x); p« pi; rce rci; /*assign start time and rc*/

end for

23 if nb proper processor is available for x°, then retL.rn(FAlL';;

2.4 assign p to x, where rc of xp on p is minimai. X2
2.5 update messages information;
end for

3 for each task x in OL, schedule backup copy x°
3.1 $(xB) ¢ x; rce- x;

XQi+x";

/*determine whether the backup of task x should be allocated to pi*/
3.2 for each feasible processor pi « F(x), subject to proposition 2 and Theorem 2 (Qin(2003)) dc
321 for (xje XQi) do /*identify already scheduled backup copies on pi that

can overlap with x° */

if (xj1s @ primary copy) or ((xj 1s a backup copy) and (p(xj)=p(x))) then

/*subject to proposition 1 (Qin (2003)*/
copy xj into task queue XQi'(x);

3.2.2 determine whether x’ is a strong primary copy;
3.23 for (all xj in task queue Xqi'(x)) do /*check if the unoccupied time intervals, interspersed by currently

scheduled tasks, and time*/

lf s(xj+1)-MAX{f(xi), EAT; (v)} /*slots occupied by backup'/

EST® (x) =
end for

MAX {f(xi), EATi® (x)} /*copies that can overlap with x®, can accommodate x® */

324 if x starts executing at ESTi®(x) and can complete before d(x) then'
/*determine ESTi based on equation (13), Qin (2003)*/

determine rci of x° or i
if ((rci<rc) or (rci=rc and ESTi

(x) < s(x))) then /*find the

minimum rc*/

s(x®) « EST®(x); pe- pi; ree rci;

end if

33 if no proper processor is available for x®, then return (FAIL);
34 find and assign p ¢ F(x) to x, where the rc of xB on p is minimal;

XQi ¢ XQi+x®;
35 update messages information,

36 for each task xj € B(x) do /'avond messages redundancy*/
Xj sends message to x2 if possible (based on Theorem 1 and

Expression(1), Qin(2003))

37 for each task xj € s(x) do /*avoid messages redundancy*/
it P(x®) # P(xj®) or x® is not a strong primary copy then /*based on

X® sends message to xjp if possible;
end for
return(SUCCESS);

CONCLUSION

The Design of FTMS is at its infancy and lacks
sufficient literature. This paper has offered (i) a descriptive
design of a FTMS (ii) a State Transition diagram (scheduling
diagram) for the designed FMTS (i) an efficient software
algorithm for FTMS design and (iv) has provided a step
towards further researches in this area. The design has been
found to be efficient for muitiprocessor systems Finally, Fault
Tolerance remains the most appropriate approach to masking
system faults.

Theorem (3), Qin(2003)*/

REFERENCES

Ahn, K, Kim, J & Hong, S. ‘“Fault-Tolerant Real-Time
Scheduling using Passive Replicas.” In Proc of the.
1997 Pacific Rim International Symposium on Fault
Tolerant Systems, Tapei, Taiwan, December 15-16.
1997

Alan, A, Mancimn, L V. Federico Rossini. “Fault-Tolerant
Rate-Monotonic First-Fit Sheduling in Hard-Real-Time

DESIGN AND PROPERTIES OF A FAULT TOLERANT MULTIPROCESSOR SYSTEM 38

Systems,” |EEE Trans. Parallel and Distributed
Systems, 10(9), pp. 934-945, 1999.

Alvarez, P. M. and Mossé, . “A Responsive Approach for
Scheduling Fault Recovery in Real-Time Systems,’
Proceedings of fifth IEEE Real-Time Technology and
Applications Symposium, canada, pp. 1-10, June 1999.

Anderson, T. and Lee, P. A. 1981. Fault Tolerance, Principles
And Practice. Prentice-Hall international, Inc., London.

Avizienis, A. and Chen, L. “On The Implementation Of N-
Version programming For Software Fault-Tolerance
during Program Execution,” Proceedings COMPSAC
77, Chicago (IL), pp. 149-155. November, 1977.

Caccamo, M. & Buttazo, G. “Optimal Scheduling for Fault-
Tolerant and Firm Reai-Time Systems,” 5™ international
Conference on Real-Time Computing Systems and
Applications, Hiroshima, Japan, October 27-29, 1998.

Chen L. and A. Avizienis, “N-Version Programming: A Fault-
Tolerant Approach To reliability Of Software Operation,”
Digest Of Papers FTCS-8: Eight Annual International
Conference On Fault —~Tolerant Computing, Toulouse,
pp. 3-9 (June 1978).

DeVale and Koopman., “An N-Version Approach To
Measuring Operating System Robustness,” in FTCS-29,
1999

Gray, J. & Siewiorec, D. P, “High-Availability Computer

Systems,” IEEE Computer, 24(9). 39-48, September,
1991.
Inacio, C. “Software Fault Tolerance,” Carnegie melion

University, 18-849b, Dependable Embeded Systems.,
Spring, 1998.
www ece cmu.edu/~koopman/des sqgg/sw_fault-
tuierance

Knightt J C. and Leeveson, N. G., “An Expenmental
Evaluation Of The Assumption Of Independence In
Multi-Version programming”, |IEEE Transactions On
Software Engineering, Vol. SE-12, No. 1. (January.
1986). pp. 96-109.

Laprie, J C., Arat, J, Beounes, C. & Kanoun, K
"Architectural issues in Software Fault-tolerance,” in
“Software Fault-tolerance”, Lyu, M. R. Ed, Wiley and
sons, 1995. pp. 47-80.

Liberato, F.; Lauzac, S.; Melhem, R. & Mossé, D “Fauli
Tolerant Real-Time Global Scheduling on
Multiprocessors,” Proc. of Euromicro Workshop in Real-
Time Systems. 1999.

Liberato, F.; Melhem, R. & Mossé, D. “Tolerance to Multiple
Transient Faults for Aperiodic Tasks in Hard real-Time
Systems,” IEEE Transactions on Computers, Vol. 49,
No. 9, September 2000.

Lyu, M. R, 1995, ed., Software Fauit Tolerance. John Wiiey
and Sons, Inc., Chichester, England.

Mano, M. M. 1982 Computer system Architecture, Sezond
Edition Prentice-Hall, inc., Englewood Cliffs, N. J,
U.S A pp 454-459

Qin, X., Jiang, H. and Swanson, D. R. “An Efficient Fault-
Tolerant Scheduling Algorithm for Real-Time Tasks with
Precedence Constraints in Heterogeheous Systems
Proceedings of 30" International Conference on Parallel
Processing. hhtp://citeseer.nj.nec. com/518704.htm!

Sommerville, L. 1995. Software Engineering., Fifth Edition.,
Addison Wesley, Harlow, England. v

Storey, N. 1996. Safety-Critical Computer Systems. Addison-
Wesley. Harlow, England.

