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ABSTRACT

This paper presents the development of an integrated production inventory model for
multistage serial system. The model seeks to determine simultaneously the optimal production
and procurement policies through minimization of time averaged variable cost of production.
The cycle concept of instantaneous multistage preduction inventory system is extended for
non-instantaneous production and integrated with co"nce‘pt of Inventory models with cost,
changes. Integer multiple parameters are~used as a check factor for cost minimization. A
numerical exampie is also presented.
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INTRODUCTION

Multistage serial production system exists in both discrete part manufacturing and chémical processing
industries. These include our vast biochemical, petrochemical, food and pharmcnceutlcal as well as
electronic packaging-industries. In serial systems, a product passes through a series of single
processing stages that transform it from raw material to final products. Inventory Management and
Production Control are the two subsystems of the total manufacturing systems. These two subsystems
interact very-¢losely in real life situation. In spite of this fact, majority of the research work in the past
have been towards analyzing them independently probably because such an approach made the study
and analysis easier. Thus to deal with production inventory systems the interaction between inventory
and production control should be taken into account very closely. '

The lot-sizing problem and infact cost minirization (optimization) of production systemn has received
considerable attention for many years. Majority of the research work have been towards the analysis
of single item stocked at a single or multi-product stocked at n.ultistage under instantaneous
consideration. For instance, Fujita (1978), Bomberger (1966) and Elimarchraby (1978) reported the
economic lot-scheduling problem under instantaneous production system using the marginal analysis,
basic period and extended basic period approaches respectively. Also non- instantaneous production
which is finite production rate have been duly worked upon. For instance, Schwartz and Schrage
(1975) presented a branch and bound scheme for Integer Merging Lot (IML) policy. - Srendrovits
(1998) presented a paper that established that the optimal policy would in general be the non-integer
split/Merge Lot sizing (NISMIL) policy. Similarly, Crowston, et al {1973) reported lot sizing for a
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multistage system with converging branches. They accounted for the interdependence ol suctcessive
stages by deriving an expression for the initial inventory required 1o ensure no stockout. Bigham and
Mogg (1979a, b) studied the same system under non-instantaneous production.  They accounted for
the interdependence of suecessive stages by delaying the inilial slartup a1 one slage relative to Hal al
its immediate predecessors. They used the lower bound solution and inteyer multiple assumptions for
their first and second works respectively.  Their formulations however did not accounmt for the raw
material consumption pattern. Gogal (1977) derived an integrated production-inventory policy for single
product at single stage under instantaneous production. Karimi (1989, 1992) presented an analytical

results for determining stationary -cyclic schedule for two-stage scrial production system using the Non-
Inter Split/Merge Lots Sizing (NISML) policy.

This work presents a formulation for a single production processed through multiple facilities with
finite production rates and startup delays for. a serial production-inventory system. The concept of
multistage serial production of Karimi (1992) is integrated with the concepts of multistage production
schedule with startup delays of Bigham and Mogg (1979a,b) and Korgaonke {1979),

MODEL DESCRIPTION

in the N-stage system, the stages are numbered according to sequence of procuction from raw
materials stage to finished product market. Note, that the real production stages starl from stage 2,
stage 1 denotes the raw material supplier while stage N denotes the final production market. So
inventory J = 1 and J = N represents the raw materials inventory and final production inventory
respectively. Thus a system with N stages has N-2Z real production stages.

SYSTEM ASSUMPTIONS
The following assumptions are made with respect to operational characteristics of the process.

1. A flow shop types production system is assumed where a product is processed on serial of

facilities in a sequence on batch basis.

2. Non-instantaneous production for a single product is assumed for which the demand occurs
constantly and centinuously (that is, the production is sold immediately it passes the final
production stage). ' '

3. Each stage cycle consists of the production time and the shutdown period. A stage with
production rate .equal the average demand rate will not be shut own and must operate
continuously within the production hours available. Such stage still be assuined a

continuous stage. Thus, by this assumption the market (stage N) is a continuous stage
4, No stockout is allowed, that is materials are feed to each stage from the upstream

inventory whenever it needs it. to ensure this, the start of stage J may be delayed by a

certain amount of time as compared to preceding stage (J — 1) if the production rate of
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stage J is greater or equal to that of J - 1)

Each stage operates a fixed cycle time in a day,

SYNMBOLS AND NOTATIONS

N
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Number of stages

Demand rate of producl {units/day) {for the finished product.

Setup cost for facility j, this is the sun of one startup and one shut down operations al stage
i

Cycle time (days) for stage (that is, the duration between succoessive startups at stage)
Gl = value added inventory cost per unit per day

value added per unit product at facility )

Daily inventory carrying change factor,

Production rate of praoduction on facility j (Units pay) in units of the final product.
Production time per lot {(days) : ] = X, Tjis '

Number of raw materials for stage |

D/pj = fraction of circle times of(facility | during which it produces.

Startingup delays of faciity | (forj - 3.}

1T - X, = a proportion off-time per cycle at stage |.
Optional lot size (batch quantity) of product at facility |
Optional lot size {order quality) of raw material per lot.
Ordinary cost per order ‘ '
Inventory carrying cost per unit per day.

Raw material demands per day.

Total variable cost per day of the system.

Total variable cost per day of the production

Inventory system at facility .

Total variable cost per day of the inventory system of raw material L at facility .
Unit cost of each raw material

depletion time of each raw material.

Ziand Zi are positive integers due to production and ordering respectively.

FORMULATION OF THE MODEL

The formulation of the model follows an approach simitar to Karimi (1992), Bigham and Moggk {1979,
and Korgaonker {1979) although it is different from them in that;

(m
(2)
(3)
(4)

It considers instantaneous production schedule and inventory control.

it considers a non ~ instantaneous production [i.e. finite productioi ratel.

It considers a single production through multiple stages in a serial production system.
An enumeration solution procedure has been sel up for accurate computation.

Because the average demand rate of the production must be produced at eich stage, we can
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therefore write that

D == PiX, |

The cconomic batch size of the production on facility is given by
Qj = M, DT,

I which QON-1 = QN - which is the (inal batch quantity

12

. . . v . . . N B
}\I} o /,,_]_ /,,_j. /,_,,3 [L /,| (] = I)* (l l/,) k)
i
Similarly, the economic order quality is

Qu Q=7 []f/} |

We propose the following defining relationship

BT B 5

X, 22X, =D O

Bi- 1 =X, : 7
Where only production schedules considered are Tor those in which

T 701 ‘ 8
Where /7, = B/, ) 9

For rational behind equations 1 Lo 9 please sce Bigham & Mogy (1979a,by and Karimi {(1992). Our
problem is that determining Bj» and Bz as to calculate the optimal values of Z;, M, T, and Zi needful to
minimize the total variable costs. Recall that in our N - stage system, only stages 1 is continuous,
we set Bir = Biz = 1Tand Ty = T2, Also stage N is assumed continuous then, Bun 1 = Bun, 2 = 1
and Tnv = Twno. Note that assigning finite cycle times to continuous stages seems arbitrary, it has
absolutely no implications because they are not real production stages. We can therefore formulate
the variable costs of the mulitistage serial production system as follows.

I The total variablé cost per day of procuring raw material 1 of the product at facility j is

ay ‘ ZaMiKy by T,

Co. = R/hfn. T 2 S Kty H
- S ivl[)l‘h n )

(J = f\’]‘/,: 'l“ +;‘ : P ks IBJI‘(bi'I) g BN(bu) -2 l’”\)' + "2“(' it (N
N

C =Y 12
’ »‘)

Where

Uj = Max | X X5 o J<N-T only 3

S'n -5, 7[1' ’)'l' )

. W2 I g | Mt 192 . . . . . | | y

r = 1 : 5 ... for price change of raw material from §; 1o S, 14
hy : 1\)1.("]1.) ’
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[63)

X
. <ij, . . -
Fuo7 7\ ’.K h ... When there is no price change AN
: bt "

to obtain the optimal values of T, we set to zero the partial derivative of C with respect to 17 thus

yiclding that:

2[5 ¥ s )

M, DIy (B(h,,) + B(byy - 2(1-U) + 5’ >' MKhZ
] g

that is

a woa
Tj* . 2[ w T ¥ MZ]
- M Dh (B(b) + B(b) - 2(-U) 1 K 1 ZM
J

ANALYSIS OF THE MODEL

The inter dependence of production stage j is included by calculating the minimum delay in the initial
start of production at stage j + 1 relative to that at stage j - L required to ensure no stock out
oceurs. {Bigham and Mogg 1996) show that of the cycle times chosen for stage | and | + 1 satisfy
equation 8 then, the following analytical startup delays expression mea s be written

di= 13, 1 Fr=Bp Ty e
where B and 3, are given by the following
A WP =P then

l“ll "‘“[ l)‘ - h, e for || e 'I

1
I by, for Vi 1 J

)'17 b 0 for II |\ |'
HI i for ‘I a< 'l‘.

And
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13/. IfP; < Py, then

B_il, =10 lor || P I,
Bj for r, < f,
By = [0 for Ty > Ty
B; e forTia< T

Recalling that Z; = Bju/Bj2, it can be noticed that for Tj.L > Tj, the value of Z; yields an infinity or Error

in calculation since the denominator is zero.

restriction has no adverse effect, thus

BjL = bj N
B, = b for Py> Py,

And

B, = [')J:g = bi for P, < Pj;],

.

To this effect, we assume that the removal of such

Practically, one can argue that the production rate of a stage ) should be equal or greater than that
of the immediate successor {j + 1), such that the successor stage can be continuously feed without
any other delay due to stock out. This will continually ensure availability of products to the product
market. By this proposition, we have only dropped the production rate restriction of the type P; <
Pi+L as against the entire removal of the restrictions as suggested by Bigham and Mogg, 1996) in their

conclusion. Thus we can write that
Bi. = b b
Bp = by, For B> pi

Similarly, we can define zjl by the expression
Ziy, = Bji/Bja

Where
B‘;I.I = b_im = 1- Iy
BjLZ = b_il,z = lo—T,

And
Iy, = \[2&1_“ (ki hy)

PREPOSITION

Production {Xj} ='Demand {D} / Production rate (P}
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In raw materials; ,

Quantity available = Quantity demanded x No of such demand = Quantity demanded x Demand rate.

Also
Depletion time = Quantity available / quantity demanded

Thus, Quantity available = depletion time x Quantity demand
Thus equating {1) and (2) established that the depletion time = demand rate

Thus By = 1~ depletion time

= Iy

ENUMERATION SOLUTION PROCEDURE FOR THE DETERMINATION OF OPTIMAL PARAMETERS

Firstly, the number of stages N involved in the system are determined; where the actual (real)
production stages should be N-2 such that stage 1 and N denotes the raw material supply stage and
the final product market stage respectively. Then the:

Values of raw material stage, number of raw material in each stage, and number of production stages

are read into the computer and the raw material and production system parameters are inputted.

Then calculate;

The depletion time which is the demand rate rji for each material from eqguation 17.

The multiplier factors Bjl1 and Bji2 from equation 22 & 23 for J <N-1 only

The integer factor Zj1 from equation 4 for each raw material at every stage and round off the
value to the nearest integer value

The production rate xj = D/pj for each it stage

Bj = 1-xj for each stage

The production multiplier factors Bj1 = bj and Bj2 = bj+1 for J < N-1 only

The integer factor for production Zj = Bj1/Bj2 for each stage, and the value rounded off to
the nearest integer

The product sum of integer factors Mj from equation 3

Uj = max (xj, xj+ 1) for each stage J = N-1

The cycle time Tj for each stage from equation 17

The total cycle time T by summation of value in step above, equation 18.

The variable cost of each raw Cj1 using equation 10

The total cost for stage J, c¢j, by summation of values in step above equation 11

The total product/inventory cost ¢ by equation 12 i.e. summation of ¢j

The batch quantity Qj, for each stage from equation 2.

The economics order quantity Qjl for each raw material from equation 4

Finally, calculate the delay dj from equation 19 for each stage J >2 that ensures no
stockout.
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NUMERICAL EXAMPLE

Table 1 below shows data from a real life situation.

Application of the model vyields table 2 (see

Ezema 2000) which gives the optimal batch quantity Qj as 275, optimal procurement quantity as 157

for raw material B of stage 1,

production as N4,071.00, and the optimal cycle time as 3.2 hours.

Table 1

R/\VV MA r l‘ RlAl ( ()hl I’AR/\M I l l‘ RS

%l-;;c Raw material
V]w — ,,,X e -
i
e |- /\ S
2 1

()rdcrmg cost | llolding wstr Umt cost
30 0.2 | 0
35 ) 0.4 i 2()‘

i 30 0.2 3()

PRODUCTION COST PARAME l ERS

Stage 1

Stage 2

‘ Demand Production rale %uupwsl
200 250 leo
200 300 T

Demand/hour

300
| 600

201

0
‘ 400

Holding cost

2

0.2

Table 2
COMPUTED RAW MATERIAL L()Sl I’ARAMI‘ TERS
A Inputted parameter ] | arameters
Stage [a | Kj |h Bjll [ BjI2 LG Qi | Raw materials
1[40 300 T037130]0.9428 [0.0572 | 0.646 | 8571.62 | 15645 A
] 30 [ 600 | 0.2 |40 | 0.7001 | 0.2929 | 0.1340 17101.92 | 386.25 B
2 35 | 200 | 0.4 )20 09354 |0.0646 | 0.646 3821.91 | 273.08 A
2 30 | 400 lO.Z i()“ ﬁ() 86()0 0.1340 | 0.1340 [ I*mﬁlw(kigéi 78‘)W37? (J8 ) WB‘ )
COMPUTED PRODUCTION COST PARAMETERS
) Inputted parameters Computed ;);{ITI;I;LLLIS o
Stage | D Pj (A TH | X ]”Uj Bl ,[fl{ TB; [Dj ]7. Mj | T ((ﬂ#*
| 200 | 250 |60 )2 0.8 0.8 02 103333102 08811 1| 0.8834) 284
2 200 30()l8() 0.2 | 0.6067 | 0.6667 | 0. 333 333 310.333 L I | 277561 275.02
o T= 3159 o= 4()71 275?|;V T

274 for raw material B of stage 2, the optimal total variable cost of
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DISCUSSION OF MODEL AND RESULT

Bj1 and Bj2 are the cost minimization factors representing factors that can boast productivity which
means higher profit and minimized variable costs. These include the likes of (1) Environmental
factors, factory site, location, excuse of workers while on duty, lack of supervision or planning.

Performance incentives: increase wages and welfare packages; planned activities usually provoke
productivity, measuring these factors are rather subjective however, we must realize that

(a) Small value of Bj1 and Bj2 simultaneously denotes when a waorker is happy and therefore
produces at his best which will invariably increase profit margin, that is Xj will be greater
showing utilization of more time in production,

(b) High values denotes increased cost due to delay, laxity ~ excuse of such may come from delay
in pigmenting wages, wages not adequate, medical and eating facilities.

(c} Similarly Bj1 and Bj2 represents procurement equivalents of ,Bj1 and: Bj2 these include names
to source of raw material and raw material handling system,

{d) For healthy production: Bj2 > Bj1; Bj2 < Bj1 givingj < 1, bj + 1 > bj; Xj > Xj+1, Pj >
Pi+1 and J1 < and rj+1 < rj such that the raw materials for stage j+ will finish earlier and
j+ 1 which will necessitate action for re-ordering of the first stage raw material and others and
thereby avoiding any delay or time wastage.

Again, bj+L > bj (i.e. off time at respective stage) such that stage j is observing off time (idle
time) less than thirty the successor j+ 1 giving rise to no laxity or waiting time of j+ 1 with
respect to j which ensures productivity and conforms with our adoption that Pj > Pj+ 1. This
delay gives the minimum or optimal total variable cost of the production system.

CONCLUSION

A general integrated production inventory formulation for a serial system was presented. The model
simultaneously determines the batch quantities of production and raw material procurement policies
of any serial production system. This model can be applied to any serial system to check for
effectiveness in production and inventory control provided the restriction that Pj > Pj+ 1 is closely
observed. It is hoped that if Nigerian companies can keep their production inventory records on daily
basis and effectively too, the formulation in this paper would be very helpful to all serial production
system and especially those companies which were used as case study following the
recommendations made.

REFERENCES
Bigham, P. E. and Mogg, J. M., 1979a. Lower Bound Solution to Multi Stage Production Scheduling Problem With
Startup Delays. AHE Trans 11(4); 313 - 317

Bigham. P. £ and Mogg., J. M. 1979b. Converging Branch Multistage Production Schedules with Finite Production
Rates and Startup Depas J. Opn Res Soc 30(8): 732 ~ 735.

Bomberger, E., 1966. Dynamic Programming Approach to A Lot Size Scheduling Problem. Mgt Sci. 12(11): 778 -784



10 ANIEKAN OFFIONG and 1. C. EZEMA

Flimaghraby, 1. 1.. 1978, The Economic Lot Scheduling Problem (EISP); Review And Extension. Mgmit Sc, 24: 582 - 598,

zema, L C. 2001, An Integrated Production Inventory Model Tor A Multistage Series Systen. A Master's Degree Plicais
Departiment O Mechanical Lngineering, University QU Nigeria, Nsukka,

Fujita, S., 1978. The Application of Marginal Analysis to the Economic Lot Scheduling Problem. A Trans 10(4): 534 537
Goyal, S.. K., 1977. An Integrated Inventory Model Tor A Single Praduction Systems. Opns Res. Quit. 28(3): 539 546,

Karimi, 1. A, 1989, Optimal Cycle Time in two Stage Scrial System with Sctup and Inventory Costs, AN Treans 2043 324

332

Karimi, I. A., 1992, Optimal Cycle Time In Multi Stage Serial System With. Setup and Inventory Costs,

Korganoker, M. G., 1979. Inegrated Production Inventory Policies for Multistage Multi Production Batch Production
Systems J. Opl Res Soc. 30(A): 355 - 302.

Sehwartz, AL Z.and Schirage, L., 1975, Optimal and Systemn Myopic Policies Por Multi Tehelon Production  [nventors
Assembly. Mgt Sc. 24(8): 863 - 807.

Srendrovits, 1., 1981, Comments on the Optimality in Optimal and System Myopic Policies For Multi Echefon Production
Inventory Assembly Systems, Mgmit Sci. 27(9): 1081 - 1087.



