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ABSTRACT

A theoretical background study is presented for the pressure and moisture distributions, stress and strain produced during the
drying process of an elastic flat plate with a receding evaporative front. A three-stage drying process is proposed. In the first stage
(saturated stage), the body is fully saturated and pressure-driven flow prevails. During the second stage (partielly saturated siage),
the evaporative front recedes through the material and divides the material into saturated and unsaturated zones. During the third
stage (fully unsaturated stage), the body is entirely unsaturated and moisture is lost by diffusion only. An exact model for the falling-
rate period of drying of solids, during which a body may be partially saturated or fully .unsaturated, is also presented based on
Sherwood's diffusion theory. The exact mode! is compared with Sherwood's approximate models for the falling-raté period, and
with experimental data. The agreement between the exact model and the experimental data is shown to be better than that
between the experimental data and Sherwood's modeis for the given drying rate.
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INTRODUCTION

There is the need to characterize properly the drying behaviour of a flat plate, considering the growing .trend and horizon of
chemical processes invoiving film formation. At small moisture levels, a wet material is brittle, and deforms in an elastic manner
under load (Keey, 1975). Such a material will return to its original condition on drying. More generally, a moist material exhibits both
elastic and plastic behaviuor. An ideal elastic-plastic solid deforms linearly with load to the elastic limit. Further deformaﬂon beyond
the yield point induces plastic flow, and the solid deforms continuously with na increase in stress.

"~ The principles of flow in porous media are of such general interest that they have been frequently “rediscovered”, and
relevant literature is found in fields including wood technology, biotechnology, soil science, food science, membrane science,
coricrete structures, and polymer science, as well as ceramics. In most cases, liquid flows through a porous body ifi response to a
gradient in pressure; at the same time, the pressure can cause deformation of the solid network and dilation (or shrinkage) of the
pores through which the liquid flows,

Scherer (1987a, 19870, 1990) showed how to develop a capillary flow model for drying of porous bodies in which loss of
moisture is accommodated by shrinkage of the body, and elastic stress is developed to balance the capillary tension in the pore
liquid. Darty's Law was applied to derive a diffusion equation for the pressure distribution within the porous body, and solved using
a two-stage model for drying. In the first stage of the model (the constant-rate period), the evaporation rate is constant and the
capillary tension within the body rises. A critical point is reached when the capillary tension reaches a maximum value at the free
surface, and this marks the end of the first stage. In the second stage of the model (the falling-rate period), the capiliary tension at
the free surface remains fixed at the maximum value and the drying rate gradually decreases. In this approach, the drying front is
effectively pinned at the free surface, which is inconsistent with reality.

Earlier models for drying, following from the work of Sherwood (Sherwood, 1931; Gllllland and Sherwood, 1933), were
based on mass transfer of moisture by diffusion within the porous medium. In these models, no account is taken of the capillary
tension or of the stress and strain developed within the porous body. There is a constant-rate period in which the evaporation rate
of liquid is constarit and the moisture content of the body falls. The moisture content at the free surface falls to its equilibrium value
at the end of the constant-rate period, and remains constant during the falling rate period that follows immediately. v

Scherer's (1987a, 1987b, 1990) and Sherwood’s (Sherwood, 1931; Gilliland and Sherwood, 1933) models for drying are
both quite widely used, yet are based on quite different paradigms. The Scherer model is based on capillary flow, and is cleatly
appropriate for the initial stage of drying when the body is saturated. The Sherwood model is based on moisture diffusicn through
the porous body and is clearly appropriate when the body is nearly dry, the pores are filled mostly with air, and the liquid exists in
is Jlated pendular drops. Neither model is entirely satisfactory, though both have been used, for intermediate stages of dryirig when
hie pores are largely filled with air but the liquid exist in a funicular state forming a continuous connected network in the body. :

As proposed in the current study, the drying process of a body may be divided into three distinct stages (see Fig. 1, which
shows a film of drying material in a container). In the first stage, the body is fully saturated, there is continuous liquid flow path to
the surface, and capillary flow prevails. The adjacent film of air is maintained in a saturated state (with respect to moisture vapour)
so that the surface behaves as free surface and the evaporation rate is constant. During the second stage, a liquid-gas inferface
(i.e. the evaporative front) recedes through the materiat and divides it into two regions; the interior of the material remains saturated
up to the interface, while the éxterior part of the material is unsaturated but has some residual liquid contained in isolated pendular
drops. The second stage ends when the interface reaches the centre of a body that is dried from both sides, or the unexposed face
of a body that is dried from only one side, and the saturated region is obliterated. During the third stage, which may be relatively
short, the body is entirely unsaturated and moisture is lost by diffusion only. The three stages are thus termed the saturated stage.
the partially saturated stage, and the fully unsaturated stage. Note that in Fig. 1, the critical point can occur in any of the three
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stages depending on the drying conditions, where « .is the rate of drying per unit ‘area in the constant—rate penod and: L is the‘
thickness of the material. Most of the stress burld»up and shrinkage occur during the saturated stage although as shown in Part il
of the series, some stress also occurs during the partially saturated stage..

This paper presents a theoretical background study for the pressure, moisture, stress -and strain drsmbutlons. in a three-
stage drying process of an elastic flat plate with a receding evaporatrve front. An ‘éxact madel for the falling-rate period of drying of:
solids based on Sherwood's diffusion theory, which will be applied in Parts If and il of this series is. also presented.

Capillary pressure

When liquid evaporates from a porous body, elements of both solid and liquid. surfaces are exposed: For a wetting liquid (contact
angle @ < 77 /2), the energy () of the solid-vapour interface is greater than the energy (y s ) of the. solid-liquid interface,

and the liquid tends to flow to cover the exposed solid surface. As thé liquid stretches towards the exterior, it goes into tension and
this has two consequences: (i) liquid tends. to flow from the interior down the pressure gradient, according to Darcy's. Law, and (ii)
the tension in the liquid is balanced by the compressive stress in the solid network that causes shrinkage (Scherer, 1990; Brinker
and Scherer, 1980). Since the volume of liquid in the material is reduced by evaporatron the meniscus must become curved at the
surface in such a way that the pressure within the liquid is lower than that in the surrounding air ( a concave meniscus). The
difference in pressure across a spherical meniscus is given by (Ford, 1986) - '

Ap-.-;.gl’ﬂ; | )
r

where y,,. is the liquid-vapour interfacial energy (or surface tensron) and ris the radous of -curvature of the meniscus. lf ther.
surface is flat (that is, no meniscus curvature), then » -—» © and Ap = 0 The pressure drfference Ap |s the dlfference between
the ambient atmospheric pressure ( P, ) and the pressure in the liquid ( p ;) and is referred 0 as the caprllary tension in' the

liquid (@) ; thatis, @ = p,,.. — p, . Thus @ > 0 as long as the liquid | remains in tension. As liquid is evaporated from the surface

of the drying material, the radii of curvature of surface menisci will decrease ‘thereby increasing the capillary tension: accordmg to
eq. (1). The tension in the liquid gradually rises, and is supported by the solid phase, which therefore goes into compression. If the
network is compliant, the compressive siress will cause it to contract into the liquid and the meniscus remains &t the exteriorl
surface. As drying proceeds, the network becomes increasingly stiff, because of the formation of new bonds and the decrease in
porosity; the meniscus becomes more curved and the tension in the liquid rises correspondingly. Once the radius .of the meniscus
is small enough to enter the pores,, the liquid exerts the maximum possible tension. That marks the end of the saturated stage;
beyond that point the tension in the liquid cannot overcome further stiffening of the netwark, so the meniscus.recedes: into'the pore
Ieang air-filled pores and isolated pendular liquid drops near the surface. Thus during the saturated stage, the shrinkage of the
body is equal to the volume of liquid evaporated; the meniscus remains at the exterior surface, but its radius r decreases

continuously.
The.end of the saturated stage is called the entry point, at which the radrus of the meniscus is small enough to fit into the
pores. The maximum capillary tension exerted by the liquid at the entry point is given approxrmately by (Scherer, 19890) ’

(ouwx = }’/.J" cos(g)Sphrl /¢ ‘ (2)

where S is the specific surface area of a porous body (area per unit mass of solid'phése.), p,,t) is the ‘bulk density of the solid
thWork (not counting the mass of liquid; that is, the mass of the solid phase divided by‘ the -total vclurne) and ¢ is the porosity of
the material. Thus | — ¢ is the solid valume fraction. Accordmg to previous theories (Scherer, 1987b, 1990; Brinker and Scherer
1990) after @ =, at the exterior surface, the evaporative front remains fixed at the surface, and the tension rises in the

interior of the body untit @ = ¢, in the liquid throughout the body. in these previous theories, the constant-rate period ended
when @ = ¢ . atthe exterior surface, and this marked the beginning of the falling-rate period.

- However, in the current study, when @ = ¢, at the exterior surface, the evaporative front is drawn into the material and
the’ body is then only partially saturated. The equations for saturated flow prevail in the saturated region of the body, and the
capillary tension at the interior evaporative front remains at P s the evaporative front recedes into the body. Mass transfer in

the unsaturated region is by diffusion and follows approximate models developed by Sherwood (1929, 1931), whose exact form is
presented in section 5.

Fluid transport in a porous body ‘
Thé transport equation will be written in terms of the gauge pressure P = p—p_ . Fluid flow through porous media obeys
Darcy's Law (Scherer, 1990), which states that the flux of liquid is proportional ta the gradient of pressure in the liquid; that is

= _-—VP 3)
un
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where J is the flux of liquid with dimensions of volume per unit’ area of the porous body (not the. area occupled by thi Itqyid) por unit
time, P, is the gauge pressure in the quwd (force per unit area of the liquid), n, is the viscosity of the ﬁqmd x is the

permeability of the body and has units of area, and V is the gradwnt operator The most popular model-for m permeabiluty
because of its simplicity and qualnatwe accuracy, is the Carman Kozeny equation which glves an approﬂmaﬁon for the

permeability in terms of the skeletal density and specific surface area as (Scherer 1990)
3 )
o ¢ - (4)-
S-#sp.) |
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Fig. 2(a). Plot of drying rate against time.
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Fig. 2(b). Plot of drying rate against moisture content.

Fig. 2. Measured and predicted drying rate profiles for hemlock wood, u =2.94 .

o0 Measured values; Exact solution (26);

Sherwood’s high drylmz
rate solution (27);

______ Sherwood’s low drying rate solution ( "8)

where p_, is the skeletal density (the density of the solid skeleton; that is, the mass of the porous liquid-free network divided by

thie volume of the solid within the network). The factor 5 is an empirical correction for the non-circular cross-section and non.linear
path of actual pores. This equation is reasonably successful for many types of granular materials, but it often fails and needs to be
applied with caution.

; If we consider an isolated region of a porous medium, the rate of change of the volume of liquid in that region depends on
the divergence of the flux (that is, the difference between the flux leaving and the flux entering). During the saturated stage of -
dryirig when the pores are full of liquid. the change in the liquid content fusing eq. (3)) must be equal to the change it pore volume,
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which is equal to the volumetric strain rate, £, . Setting these changes equal, glves the equatlon for contmunty (conservation of.
matter) in terms of the gauge pressure as

O*P .
gy =-V.J =L (5).

'7/, axl

where in index notation i =1,2,3 and x, = x, x, =y, X; = z; the superscript dot indicates the partial derivative with respect

h time, the repeated index (/) indicates summation, and x .and 77, are taken to be constant. Equation (5). applies. during tha
saturated stage, and within the saturated zone of the partially saturated stage. '

4. Stress in a saturated porous elastic body _
In this section, the constitutive equation. for a saturated porous elastic body is developed; that is, the relationship batwéen the

stress applied to the body and the strain that results. The stress {tensor) o acting on a saturated porous body is supported partly

by the solid phase and partly by the liquid in the pores in the additive form _
U(/ = O-Ll/ + O.Si/ (6)

where O is the stress (tensor) acting on the liquid phase, and 0'\,, is the stress (tensbr) a(:ting on the solid phase. (T! hat is. the - '

force on the respective phase per unit of the total surface area). If the matrix structure is isotropic, the stress in the liquid reducas to
a pore pressure, which may be expressed in terms of the gauge pressure in the |IC|UId as (Aris, 1962; Landau and Llfshatz 1986)

UI,4/ ¢P 54/ (7)

where ¢ is the pore volume fraction (void fraction), and é',.j is the Kronecker delta. Note that.we apply the gauge pressure:

convention also to the normal components of the stress so that the stress tensor is zero in an undeformed body. The stress carried
by the solid matrix depends on the constitutive behaviour of the matrix in the absence of the liquid (that is, the hypothetocai empty
porous network when the liquid is drained away, not the dry body). Since both the solid and liquid phases-are assumed io be
incompressible, it is only the solid network that can comply to the capillary tension. If the network. is assumed to be’ AIasttc, the
stress supported by the solid matrix (or network) is given by (Landau and Lifshitz, 1986)

E/’ V/’
1 £, +———&,6, (8)
+v, 1-—2v,,

GM!'I =

where F P and v p are the Young's modulus and Poisson's ratio respectively for the porous_ m'atrig(, O hij is the torce per unit of

the total surface area, and &, is the linear strain tensor given in terms of the displacement vector U, by

\ - Ou
£, =l %.,_ 1 (9)
© 2l ox,  Ox

i

and assumed to be small. The stress O i is supported by the deformation of the matrix, and this stress exists only if the porous
matrix is deformed. In an undeformed saturated porous material, the pressure in the solid phase must be equal to the pressure in
the liquid. By analogy with €q. (7), the stress acting on the solid phase of an undeformed porous material is — (1 -»¢)PL§,1 .
Addition of eq. (7) and the total stress borne by the solid phase, éccording to eq. (6), gives

E v .
o,=-PJ, + i &, + P &40, (10)
© 1+v,, To1-2v, '

Equation (10) is the constitutive equation for the stress acting within a saturated, porous, and isotropic elastic material. The
objective is to determine the stress borne by the deformation of the matrix, which is

' Opmy =0, +P/454/‘ (1)

In soil mechanics, this is termed the effective stress (Terzaghi et al., 1996). The equiiibriumi equation for quasi-static conditions, and
for a case in which the deformation of a body is caused not by body forces but by forces applled to its surfaces (or in this case by
pore pressure), may be obtained through Newton's Second Law of motion as

oo,
L =0 (12)
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Using eq. (10) in eq. (12) gives a general form of the equilibrium equation for isotropic Imear elastic saturated porous bodles as

or, v, | 13
4'~+-v4(i€/, +_L___‘?__gﬂ‘ =0 (13)
ox, l+v, Lax, 1-2v, 0Ox, ‘

g
which upon operating through by 0/ 0x | using eq. (9) gives

E(-v,)

2 .
= &y (14)
(I+v,)1-2v,)
Using eq. (14) in eq. (5) results in & diffusion equation for the volumetric strain- £, in the form
N :
0= DV 5.'// (15)

where D =xE, (1-v,)/n,(1+v,)(1~2v,). An equation for P, which is not a pure diffusion equation can be obtained

by taking V2 of eq. (5) through eq. (14) as

[(8/8t)- DV VPP, =0 (1)

In contrast to the current work, Scherer (1987b) made the additional - assumption that for an elastic solid phase, the
velumetric strain obeys the following constitutive equation (here written in terms of the gauge pressure)

P,
&y =36y + '1?’“ (17

where K p I8 the bulk modulus of the porous matrix (not the modulus of the solid phase itself), and £, is said to be the linear

strain caused by the solid-liquid interfacial energy, which is given by
==Y uSpul=v )/ E (18) ,

where v, and E_ are the Poissori's ratio and Young's modulus respectively for the solid phase. The strain &, was assumed to
be present in a saturated body, and uniform throughout the body at the éiart of drying. By'the implied assumption that &, is
constant, the volumetric strain rate .é,, was obtained from eq. (17), and the resuiting‘ expréssion used in eq. (5) to give

P =DV'P : - (19)

where DS =K ,,K'/ 7, . Equation {18) was then applied (Scherer, 1987b) to a flat plate that is dried from both sides. However, in
view of the relationship (Landau and Lifshitz, 1986; Brinker and Scherer, 1990) K, = E, /3(1-2v »)» the resulting value of

Dy is slightly different from D above. For example, if v, is small (for-highly compressible liquid-free network), then D= 3D,

‘which indicates a significant difference between the two diffusion coefficients. Furthermore, the local equilibrium equation (10) was
not used; therefore eq. (19) (unlike eq. (16)) is not consistent with the full system of equations (egs. (5), (8). (10), and (12)).
Equation (19) may, nevertheless, be a useful model equation. It will be seen in Parts Il and Il of this series that a diffusion equation

- for the pressure analogous to eq. (19), but with the diffusion coefficient D, may be rigorously derived for a flat plat with a fixed base.
As in Scherer's model, both the drying stresses and strains are analysed in the current work through the pressure distribution.

§.  Exact diffusion model for the falling-rate period

In any drying operation, the manner in.which the water in the solid travels to the solid surface, and then out into the air, has an
iniportant influence on the rate of drying. According to the widely accepted Sherwood's theory in drying, all very wet solids being
dried under constant drying conditions exhibit a period (called the constant-rate period) during which the rate of drying is constant.
The rate, however, does not remain constant until the solid is dry, but at some intermediate moisture content called the cnitical
moisture content, the rate starts to decrease and the range from the critical point to dryness is called the falling-rate penod. The
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. equation proposed by Sherwood (1929) fo goverfi mass’ transport inside all drying medra is gaven by ST
| ) 8lp o

P -p,2L | @

o ”ByT

where o is the moisture concentration. (irr mass units), D' is the moisture diffusion coeff cient, y is the distance of transport of

n
moisture, and ¢ is time. During the constant-rate period of drying a flat plate with a fixed base as in Fig. 1, the morsture gradrent at
the exposed face (y = L) is equal to the constant drying rate, while that at the ‘unexposed face (y =0)is zero at all time, With

the assumption of a uniform moisture drstnbutlon at the start of drying; Grlhland and Sherwood (1933) presented a solutron 1o eq:
(20) based on the above conditions for the constant-rate period in dimensionless form as -

2 ) |
6,Y,r)=1- y[r +: Y— —— Z exp(—-n x*r)cos(naY)| (21)
. T n=) :
The dimensionless variables are defined as“
=P, i D - o
g=L"Pu y=2 1:-_57"" (22)
pn — pe‘l L ' L ‘

where L is the thrckness of the flat plate, p, is the. mrtral umform morsture concentratron Py 1s the equrlrbnum morsture :

concentration, i =al /(p, - Py )D,, is the drying rntenstty which relates the characterrstlcs times for. evaporatlon and Ilqurd,
_ diffusion, and @ is the rate of drying per unit area in the constant-rate period. When H is large, evaporatlon is. fast large*
concentration gradients occur, and the constant-rate period is short. Conversely, when- 4 is small, evaporatron is slow the
concentration gradients are small, and the constant-rate period is long. The total quantlty of moisture, ©, in the: body at any time

durmg the constant-rate period is obtained by integrating eq. (21) across the thickness to obtain ‘ v
@, (1) =1-pur | (23)

Equation (20) still holds in the falling-rate period since the process is controlled by diffusion of free moisture. The. initial
condition of the falling-rate period corresponds to the moisture distribution at the end of the constant-rate petiod, which is grven by

eq. (21) ar=r,, where 7, is the dimensionless critical time. The moisture concentratlon at the surface of the body dunng the

falling- rate period is the equullbnum moisture content, while the moisture gradient at the unexposed face remains the. same (i.e.
- zero). The dimensionless form of eq. (20) can be soived using these condmons to obtain the moisture dlstnbutron during the falling-
rate period in dimensionless form as (Puyate, 1999) -

0,(Y,s) —-—ZH exp[—(2k — 1) 7 s/4]cos[(2k-1)7z'Y/2] | (24)

k=l

where s =7 —7,, ard

(=Dt 1 4 2k-' & exp(-ninir,)
f k~1) ”[T 3 72k —1)? 7’ Z;n 2k -1) —an’]| (23)

The total quantity of moisture in the body at any time during the falling: rate period is obtained by integrating eq. (24) across the
thickness as

®2(s)=— ;(2k_l)f1 . exp[-(2k = 1)’ 7’5/ 4] (26)-

In contrast to the above, Sherwood (1931) analysed an rnﬁnrte slab for two cases which may be interpreted in terms of the
drymg intensity i as:

(I) y >> |; that is, the drying rate is very fast, the constant-rate period is negligible, and the moisture distribution at the beginning

of the falling-rate period is approximately the initial uniform moisture concentration. This Sherwood's high drying rate (HDR) model
for the falling-rate perrod is given in dimensioniess form as

0,(r) = ——Z—-Z(Zk ~1)? exp[-(2k - 1)’ 7’1/ 4] (27)
w

k=l
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(i) u<< l that is, the drying rate is very. slow-and.a paraboluc moisture distribution is. assumed to exnst at the start of the fallmg- ’
rate period. This Sherwood's Iow drymg rate (LDR) model Yor the fallmg -rate period is glven in dlmensmnless form as

0,(s )_32“ 3 k=1 expl=(2k - 1) 2%5/4] (28)

k|

Figure 2 shows comparison of the drying. rate profiles of Sherwood's LDR and HDR models, -the exact ’solu‘tiona, (26), and
experimental data on hemlock wood (Puyate, 1999) for 1 = 2.94, using eq. ’(23) for-the constant-rate period. Details of this

comparison are provided in Puyate (1999). it may be seen that the exact solution (26) compares well with-the experimental’ data

but the LDR solution under-predicts the critical time and the drying.rate in the early stages of the falling-rate period. For short times
or high moisture content, the HDR solution over-predicts the drying rate in the constant-rate period. For- longer times -or small
moisture content, the HDR solution under-predicts the drying rate. For thls value of 1, the errors in the two approximate soluttons-

are of similar magnitude. The main difference between Sherwood’s squtnons and the exact solution i isin the length of the constant-\
rate period which results in the under-prediction of the drying time in the falhng -rate penod

DISCUSSION AND CONCLUSION

The theory is presented for the drymg characteristics of an elastic flat plate with-a recedmg evaporatlve front. A three- stage drying
process is proposed in which the first stage is saturated. During the second stage (partially saturated stage), the receding
evaporative front divides the material into two. regions; an unsaturated region between the surface of the drying material and the "
evaporative front, and a saturated region between the evaporative front and the unexposed face of a material with a fixed base. In
the third stage (fully unsaturated stage), the saturated region of the partially saturated stage is obliterated and the body is entlrely».
unsaturated. Fluid flow in the saturated part of the body is governed by capillary pressure according to Darcy's -Law. Moxsture
transport in the unsaturated part of the body may be described by Sherwood's diffusion theory, upon which an exact model is-
presented here for the falling-rate period. The exact model captures the true moisture distribution. at the end. of the constant-rate
period, while Sherwood's models are based on assumed uniform and parabolic moisture distributions at the end-of the constant--

rate-period. For 1 = 2.94, the moisture distribution at the end of the constant-rate perlod is neither uniform nor parabo,lic (Ptlyate -
1999), and this explain the deviation of Sherwood’s models from the exact model and the.experimental data in Fig. 2.-Sherwood's

models, however, compare reasonably well with the exact model and with experimental data at values of g corresponding to the
assumed initial conditions of these models (Puyate, 1999). On the whole, the proposed three-stage drying process may be
characterized by coupling Scherer's model and Sherwoods model in a:unified treatment as discussed in Parts Jt and 1l of this
series. .
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