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A RECEDING EVAPORATIVE FRONT MODEL FOR THE DRYING
CHARACTERISTICS OF A FLAT PLATE Il: STRESS AND STRAIN
DEVELOPMENT.
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(Reccived 5 January 2004; Revision accepted 28 February 2003):

ABSTRACT

An analysis that captures the receding drying front is presented for the stress and strain produced during a three-stage dryirig
process of an elastic flat plate with a fixed base. In tne first stage. (saturated stage), the body is fully saturated and pressure-driven
flow prevails according to Darcy's Law. During the second stage (partially saturated stage), the evaporative front recedes . through
the material and divides the material into saturated and unsaturated zones; the equations for saturated flow apply to the saturated
region, while moisture transport in the unsaturated region is by diffusion. During the third stage (fully unsaturated stage), the Hody is
entirely unsaturated and moisture is lost by diffusion only. The position of the evaporative front is updated using the.maximum_
capillary tension at the interior of the evaporative front as it recedes through the material. The stress on the solid matrix increases in
praportion to the thickness of the plate and the rate of evaporation, and in inverse propomon to the permeability. The' maximum
stress occurs at the drying surface of the plate.
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INTRODUCTION

In Part | of this series (Puyate, 2005), the theory on the drying characteristics of a flat plate is presented, as well-as a proposed
three-stage drying process for porous maierials. In the first stage (saturated stage), the body is fully saturated and capillary. flow
prevails. During the second stage (partially saturated stage), the evaporative front recedes into the material and divides it into two
regions; the interior of the material remains saturated up to the evap_orative front, while the exterior part of the material, is
unsaturated. During the third stage (fully unsaturated stage), the saturated region of the partially saturated stage is obliterated and.
the body becomes fully unsaturated; moisture transport within the body during this stage is by diffusion oniy. .

Scherer (1987b) has developed a capillary flow modei for calculating the elastic stress and strain produced during drymg
of a flat plate, through the pressure distribution within the body. Darcy’s Law. was_applied.toderive a diffusion equation for the
pressure in the liquid, which was solved using a two-stage model. In the first part of the model (the constant-rate period), the.
evdporation rate is constant and the capillary tension within the liquid rises. A critical: point is reached when the capillary tension
reaches a maximum value at the free surface, and this marks the end of the first stage. in the second’ stage of the model (the
falling-rate-.period), the capillary tension at the free surface remains fixed at the maximum value and the drying rate graduany
decreases In this approach, the drying front is effectively pinned at the free surface as the falling-rate period prOgresses which is
inconsistent with reality.

. Since Scherer's model is based on capillary flow, the model is clearly appropnate for the. initial stage of drying when the
body is saturated. When the drying front recedes into the material, Scherer's :model applies only to the saturated region ‘of the
partially saturated stage. Within the unsaturated region of the partially saturated stage, and during the fully unsaturated stage,
Scherer's model does not apply; yet the model was used to describe the entire dr'yingj'proces_s of a flat plate from the saturated
slage to dryness. There are other inconsistencies in Scherer's analysis which are pointed out in the work by Puyate (2005).

However, in the present paper, when the capallary tension reaches its maximum value at the exterior surface the
evaporatwe front is drawn into the material and the body is only partially saturated. The equations for saturated flow prevail in the
saturated region of the body. and the capillary tension at the evaporative front remains at the maximum value as the evaporative
front recedes through the body. Most of the stress build-up and shrinkage occur during the saturated stage, although as will be
shown, some stress also occurs during the partially saturated stage.

This paper presents a model for calculating the stress and strain that develop during a three-stage drying process of an
elastic flat plate with a fixed base, takmg into account the transient evolution of the evaporatave front. Like Scherer's analysis
“(Scherer, 1987a, 1987b, 1990), this work is based on a diffusicn equation for the pressure in the liquid, but with a different dlffusmn
coefficient, which is rigorously derived for a flat plate with a fixed base as follows.

-Model development

Thé equation for continuity (conservation of matter) during the saturated stage of drying is given by (Puyate, 2005; Scherer, 1990)
x 0 P
(1)

"I, a'xl

€

where in index notation i = 1. 2.3 and x, =X. Xy =Y. X; =2I. £, is the volumetric strain rate and the superscripi dot

indicates the pamal derivative wnth respect to time, the repeated index (/) mdlcates summation, P, = p 1 =~ P 15 the gauge
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pressure in the liquid (where p), is the pressure in the quurd and p,,,,,,' is the atmospheric pressure), K and- 1), are taken to be
constant and represent the permeabnllty of the porous medmm and VIscosﬂy of the Irquud respectively.. After the entry pomt (Puyate

2005), the network is no longer able 10 shrink at a rate equal to the’ rate of evaporation and the memscus retreals into the matenal )
then eq (1) applies only within the saturated zone inside the body.
Just as calculation of thermal stresses requires knowledge of the. temperature distribution,. predrctlon of drying stresses

depends on calculation of the pore pressure drstnbutlon This involves expressing the volumetric stram rate, a,, in.eq. (1) in terms -

of the gauge pressure in the liquid using a constitutive equation for the network. Various authors have done this by: assummg'
elastic behaviour of the network with the solid and liquid phases compressible (Biot, 1941) or incompressible (Scherer. 1987b). or-
a"owing the network to be purely viscous (Scherer, 1986) or viscoelastic (Biot, 1954; Scherer, 1988).

in the current work, the network is taken to be compressibie and linearly elastic, while the solid and’ liquid phases are
taken 1o be incompressible, upon which, the total stress borne by the soiid phase is obtained as '

v . .
=-P,3, + g, +——t—g,d, 2
l+v,, Tol=2v,

where O, is the stress (tensor) acting on a saturated porous body, J,, is the Kronecker delta,’ E » and v, are the Young's:

A
modulus and Poisson’s ratio respectively for the porous matrix, &, is the volumetric strain, and €, is the linear strain'tensorlgivefn

in terms of the displacement vector u, by

1{ 6u, Ou,
£, =—| —+— 3)
2| 0x, ox

and assumed to be small (Puyate, 2005).

For a one-dimensional drying process with fluid transport in the z —direction; . P, is taken to be independent
of the x and y directions in 3 Cartesian co-ordinate system, and eq. (1) reduces to '

P _K@P @
. 'n, oz’ '

Hence &, and £, are also independent of x and y. It is further assumed that the di‘spl‘ace‘ment.af material in the

“z—direction (4. ), and hence thé normal strain in the z —direction (¢..) are also independent of x and y. For a
drying material that is homogenous in the plane, the normal strains in the horizontal x and y directions are taken to be
equal that is, =¢g,, =&y, and the volumetric strain becomes

€y (= &y )’= € + g,\{r + €. = 28[4 + £ ‘ (5) !

where £, is the ‘total' and &, is the ‘horizontal’ strain. Since &£, and £ are |ndependem of xand y, sois £, (Puyate, 1999) N
" Accordingly, the displacements in the x and y directions can be obtained as :
u,= gh’ » ‘_r =&)Y (6)

Equations (6) are consistent with the deﬂnmon for normal strain under the assumed conditions (Shanley, 1957). The normal
stresses can be obtained from eq. (2) as

Vp )
£y +——t—g, )
P 2VI’

. _ p
0'.\'.\" - o-,,ljn - —'P/A + 14v

E,
oc..=-P + l L | (e, -2¢,)+ & (8)
+

1—2v

p

Thus o, and o,, are independent of x and y. The equilibrium equation for isotropic linear elastic saturated porous
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bodies requires that (Puyate, 1999, 2005) ' '
do,.
Tor . .
The stress component o, can be related to the strain compohent £, us_ihg eq. (2) throu_‘gh"ects’. (3),_ {6), and' (9). to
obtain the component strains '

—=20 o PR () N

B, - . B, o . :
E.=—7"X, £, .=— 10)-
-t 8. =Sy w0

with the corresponding component stresses:

EB, EB

Op=cl"—x,  o.=-""" (11)
' 2(l+vl,) 2(1+v,,) ,

and the displacements
u, = (A, + BH 2%, u, =(4y +B,z) y o a2

where 4, and B,, are unknown constants Equations (4)- (12) hoid for one- dlmensmnal cases. We now denve the }

diffusion equation for the pressure in the liquid, and the expressions for the stresses and strams that develop dunng .
drying of a flat plate with a fixed base. :

Flat plate with a fixed base ‘
Let the saturated porous body be a flat plate of thickness L which is homogenous in the x andy dlrectlons The X— yi‘.

plane lies at the lower surface of the plate which is fixed at & = 0, while the upper surface at z=1L'is free. The plate '
is assumed to adhere to a rigid substrate as it dries. This is a reasonable model for the slip. castmg of a ceramic.
-suspension (Briscoe et al., 1998; Puyate, 1999). Evaporation occurs at the free. surface so that varlatlons of 1’

stresses, and strains, occur mainly in the z — direction. Since the plate cannot contract parallel to the- x- y ‘plane,
u, =u =0 at z =0. There is no external force applied to the surface of the plate (as drying progresses) so

o.=0.=0_=0 at z=L; this implies B, =0 in eq. (11). The equilibrium equation for isotropic 'Iinear 'elaStic
saturated porous bodles also requires that
0o.. ' ‘ -
=0 (13)
0z ' '

It may ‘be seen from eq. (13) that o_. is a constant on integration. Since o.. =0 at z=L, it means o_. =0

| everywhere in the plate. Putting o_. = 0 and g‘,', =0 into eq. (8), with &, = g, gives
E (1-v,)

' —(1+v )i-2v,)"" '

(14)

~ So, in this case, P, is proportional to ¢, . The volumetric strain rate is obtained frqm eq. (14), which is then used in
€q. (4) to give the diffusion equation for P, in the z —direction as ‘ '
o, _ 0P, ‘
o oz’

(15)

where D =«E (1-v,)/n, (1+v, )(1-2v,) asin Puyate (2005)

Pressure distribution :

In this section, models for the pressure distributions in the saturated stage and within the saturated reglon of the

partially saturated stage, are presented for the one-dimensional drying of a flat plate whose base is fixed. The
- receding evaporative front is accounted for in the models, and Darcy's Law is used to descnbe saturated pressure-

druven flow.
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- Stage 1. Saturated stage “ ' - . =

During the saturated stage, the pores are full of hqurd so Darcy's Law holds the govermng equatron for {he pressure
distribution is given by €q. (15), which is restated here for the:sake of convenience as

'ﬁf -a—ll  0<z<l (18)
ot C0z° , :

where z is the distance measured in the direction of fiuid ﬂow Lis the thrckness of the plate, ¢ is time, and I’ and D are as defi ned
before. Initially, the free surface of the plate is covered with a film of liquid (flat surface) so the capillary tension in the liquid is-zero; :
and P = (. Since the rate of evaporatlon is constant durrng the saturated stage, the evaporatrve flux must balance the’ pressure'

flux at the free surface (z = L), whrle the pressure flux at the unexposed face (z 0 is zero. The initial and boundary conditions
of eq. (16) for the saturated stage may then be expressed as .

(=0 P =0 - (7a)

2=0: o, _ 0 (170)
oz L

z=1L: QP_/ __an, (17¢)
oz PLK

where a is the constant rate of evaporation per unit area in the saturated stage K is the permeablllty of the plate and P is the

density of the liquid. The saturated stage ends when P, falls to a minimum value P

min

at the surface, corresponding to a

maximum capillary tension ¢, .. . Thereafter, the menisci recede into the pores and the partrally"saturated‘stage _b‘egtns. i

Stage 2. Partially saturated stage
Equation (16) applies to the saturated region of this stage, with the initial condition correspondrng to the pressure drstnbutron at the
end of the saturated stage (Puyate, 2005); the pressure at the interior evaporative front remalns at P:,,m as the evaporattve front

retreats into the body. The governing equation for the saturated region of the pamany saturated stage may then be expressed as

Saturated zone

% _p 6-1:’- 0<z<z(t)" ‘(18)
£l 0z° : S
with the corresponding conditions
= tl-.~ : I)I = [)I (Z, tl:') (193)
z=0: % . (19b)
=Z,»(t): PI, =.1)min o (190)

where £, is the time for the end of the saturated stage (the entry time), P,.(z,!,.) is the pressure distribution at the end of the

saturated stage, and Z, () is the time-dependent interface (evaporative front) position assumed to be sharp. i

The saturated and unsaturated regions of the partially saturated stage may be coupled through a continuity of flux
condition at the evaporative front, with which, the' motion of the evaporative front can be determined. However, @ more useful
expressron may be obtained from the boundary condition (19c), which may be drfferentlated with respect to time to give the rate of
cﬁange of the posrtron of the evaporative front as

2 2 ‘
t0=-2 08,107 o)
L ep ez ), |
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where the superscript dot |nd|cates the derwatrve with respect to trme The mmal condrtron for the Iocatnon of the:
evaporative front is

f1.=r,.: 4 (r‘_.)v=L, (21)
Note that at the inception of the partially saturated stage the extent of the unsaturated zone is infinitesimal; so that the
initial condition (21) is appropriate. The partially saturated stage ends when. the evaporative front reaches the
unexposed face of the plate, where z, (1) = 0, and the saturated region is obiiterated.

Stresses and strains

Once P, has been found, the non-zero c‘omponehts of the-stress are given by eq. (7) with. &, = g, aqd €, =0 as.

. ' E v, ;
0’».\'.\'- = a|'|' = _1)} (22)
(1+v - 2";')

Using the expression for ¢, from eq. (14) in eq. (22) gives this stress as

RaY

o,=0,=-GP, (29)

where G, =(1-2v, ) /(1-v »)- The value of v , is expected to be small for a material whose liquid-free porous-network is

highly compressibie, giving G, = | in such cases. Thus the stress is proportional to the local pressure in the liquid Wheri th*e-b_ase
of a material is fixed and drying occurs from only one exposed face. The stress carned by the: sohd matrix is
Oue =0, +P, =G, P, (24).

where G, =v,/(1-v,). Since P, is negative. this stress is compressive. The only .non-zero;.comperéent'of the .
strain is |

£.=¢6, =6 =GP /E, ' -(25)

“where G, = (1+v,)(1~2v,)(I-v,).

3. .Solution for the drying equations for tie two stages
Using the dimensionless variables
P, z z,(t tD
F =t Z == 21(1’)::—-——»'() T=— (26)
P L : L L

min

in eqs. (16)-(21) gives a set of dimensionless equations in each of the two stages of drying. In order to fix the size of
the saturated region of the partially saturated stage, Z is rescaled by Z,(7) in the form

VA
¢ Z,(7)

@7

where { is a new dimensionless spatial variable.

Stage 1. .Saturated stage
Using § from eq. (27) in the dimensionless form of eq. (16) grves the rescaled dimensionless transport equation in
the saturated stage as

oOF 0'F

= = 0<¢ «l >28
or 64‘2 ¢ . @9)

with the corresponding conditions



44 , . : _ V.1 PUYATE

1
0.8
T
0.6} .
F E—— e :
04‘»___________,_/
/
0.2t
—_—__—___’/~
0.2 . 0.4 © 0.6 0.8 S |
Z

Fig. 1. Pressure distribution in the plate during the saturated stage.
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Fig. 2. Stress supported by the solid matrix during the saturated stage.

r=0: F=0 (29a)
oF

=0 —_— , 29b

g o (29b)
oF

=1: —_— = 29

4 oc (29c)

where A =an, L /|P,

evaporation and liquid flow. When A is large, evaporation is fast, large pressure gradients occur, and the saturated stage is short.
QOhverser, when A is small, evaporation is slow, the pressure gradients are small, and the saturated stage is long. Note that

in i P, K is a dimensionless evaporation rate (or drying intensity) that relates the characteristic times for

during the saturated stage, the evaporative front remains at the surface of the plate so that Z,(7) =1 and { = Z . The saturated
stage ends at 7 = 7,., when F increases to unity at Z = 1.

In order to match the pressure distribution of the saturated stage at 7, with the initial condition of the saturated zone of
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the partially saturated stage, eq. (28) has been solved numencaliy using conditions -(29). The. numencal solutions have : ‘been.
obtained by converting the governing equations to a system of non-linear ordinary differential equation; the- spatial derivatives were
approximated using second-order central differences in the partial differential equations, and second-order one-sided: diﬁerencee in
the boundary and interface conditions (Puyate; 1999). The resulting system of ordinary differential equations was integrated: ysing .
Runge-Kutta procedure implemented in Mathematica.

Figure 1 shows a plot of F against Z for increasing values of 7, representmg the pressure distribuﬁon in the ptate during -

the saturated stage. In this and subsequent figures, the parameter value A:=1 is used, for which r, =0. 667 (determnned.:

numerically). The dimensionless variable F represents the tension in the tiquid so the- pressure in the liquid will be high-in the
region of low tension, and vice versa. Thus, the pressure distribution represented in Fig 1 is uniform, ‘with. hlgher pressure further
from the drying surface. -

Siresses and strains durning the satyrated stage -
The stress carried by the solid matrix may be expressed using €q. (24) in dimensionless form as

G, = |‘;;A-I.r.r| =-G,F | | (30)

mn

where (1, is as defined betore and the caret indicates the dimensionless variable. The negative sign in eq. (30) simply indicates

ihat the stress on the matrix is compressive, thus the dnmensronless compresswe stress on the matnx may be represented by-
" &y =~0y,,- Figure 2 shows a plot of G, against Z for.a range of values of 7 for A = 1 and V =0.2" it may be seen
from Fig. 2 that the compressrve stress at any time in the plane of the plate is -always lower at the fixed base than at the surfaee.
and the magnitude of this stress depends on the value of G The stress developed in the plate during the saturated stage is

propomonal fo the rate of evaporation and the thickness of the plate, and is inversely proportional to the permeability. that is, the
stress is increased by those factors that steepen the pressure gradlent and therefore grows with the lntenslty of drying.. The

maximum stress occurs at the surface of the plate when P, falls to, P, (F =1)and the quuud exerts the maxrmum possrble;v

mm A
force; this maximum stress may be seen from eq. (30) to be G, |P, | min [ With the stress at the surface of the plate higher than that

&t the fixed base, permanent deformation due to stressing beyond the elastic limit would be expected to start appearing at the
surface.

The volumetric strain comes entirely from the contraction ot the plate in the direction (2) normal to the plate and maybe
expressed using eq. (25) as

8:: =€II == | mln|F/.Ep (31)

where G, is as defined before, and the negative sign indicates shrinkage. Clearly, the strain distribution during the sa_turated stage
is similar to the stress distribution. : ' ’

08 ]
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Fig. 3. Evolution of the evaporative front position during the partially}saturated
stage.
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Fig. 4. Pressure distribution in the saturated zone of the‘partialfly saturated stage.
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Fig 5. Stress supported by the solid matrix in the satu:ﬁ;ed, zone of the partially
saturated stage. -

* Stage 2. Partially saturated stage
The rescaled dimensionless transport equation in the saturated zone of this stage can be obtained as

Satgnudzom ,
oF (20, oF__1 oF \ .
or [Z,(r)g]aé'_z,’(r) oc? Oéé’-'d - @2)

with the corresponding conditions

f = TI:' : F = E ({’ z'l'.') ’ (333)
' oF
=0: — = 33b

¢=1: F=1 (33¢)
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The rescaled form of eq. (20) which is used to update the position of the evaporatlve front becomes '

v (6‘Frac?) |
Z,(r)=- (a 4] (34)
Z(r)\-OF/0¢ £ _
with the initial condition
=T, Z (7)) =1 (35) :

Figure 3 shows the transient evolution of the evaporative front from the end of 'the saturated stage to the end of the: partially
saturated stage. It may be seen from Fig. 3 that the partially saturated stage ‘ends when 7, =1.05.

As the evaporative front recedes into the plate after the dtmenswnless entry time 7., the interior of the: plate between the

unexposed face and the evaporative front remains saturated until the evaporatwe front reaches Z=0a71= ‘2'(,. Equatton (32)
can then be solved numerically using conditions (33) to ‘obtain he pressure distribution in the saturated zone of the partially'
‘saturated stage for the period from 7. to 7,, as shown in Fig. 4. ‘

Stresses and strains during the partially saturated stage
The stress in the partially saturated stage occurs only in the saturated zone where the pores are full of Ilqu1d and Darcy's- Law ,
applies. Figure 5 shows the compressive stress distribution on the solid matrix of the saturated region of the partially. saturated

stage for the period 7, < 7 < 7, with v, = 0.2; the corresponding strain dlstnbutnon is S|m|Iar to the stress dlstnbutlon As the

saturated zone recedes into the plate, an eIastlc plate expands slightly as the total stress on the network is relleved (Kawagucht et
al., 1986; Simpkins et al., 1989).

CONCLUSION
An analysis has been presented to describe the stress and strain that develop during a three-stage drying process of a flat plate
with a fixed base, in which the solid network is assumed to be- elastic, with the solid and liquid phases incompressibie. Fluid
transport through pores of the body is assumed to obey Darcy's Law in the saturated region. Aithough the means’of calculating
drying stresses and strains through the pressure distribution have been developed relatively recently, thé present: model whlch
caplures the receding drying front offers a more qualitative descnptuon of drying stresses and strains.

The stress results from a gradient in pressure in the liquid in the pores of the drying body. The stress mcreases with- the
drying rate and the thickness of the body, and is inversely related to the permeability of.the body. The compressive stress on the
network is greater at the drying surface, and reaches a maximum value at the entry point. At the end of the partially saturated

stage, the body will recover its original shape if it is truly elastic because the stréss on the matrix will have been released. lf the
materlal is plastic and the yield stress is exceeded or the material is hypoelastic, it remains permanently deformed. .
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