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ABSTRACT 
 
A time domain numerical procedure is presented for a simulation of electromagnetic wave phenomena. 
The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to 
model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm 
in mathematica environment is presented. Source implementation and the effect of conductivity on the 
incident field are investigated. Simple illustrations of propagation in a non-conducting, partial conducting 
and conducting medium are provided. For the computational space, Cartesian grids of fixed size were 
used as it makes grid generation to be relatively easy. The numerical data generated by the program 
code were sampled at various time steps from t0=1 to 90 along the computational space. The simulation 
results show the advancement of the pulse into the medium at various time stepping, shift in the peak of 
the amplitude was observed on the pulse for all the time steps. An attempt to further show the 
attenuation as the wave propagates into the stratified medium is made. The amplitude of the pulse falls 

sharply from 0.006 to 
11101 x for t0=1 and t0=50. The results indicate the working of the model and it 

could be used to study the behavior of the wave as it does propagate across the medium.  
 
KEYWORDS: Stratified Medium, Finite Difference Time Domain (FDTD), mathematica, Maxwell’s 
            Equations, Electromagnetic Waves (EM) 
 
I. INTRODUCTION 
 
 Maxwell’s equations provide a 
description of electromagnetic phenomenon often 
mathematical difficulties are usually encountered 
while trying to solve the equations in the 
circumstances of practical applications. In a few 
special cases, it is possible to obtain exact 
analytic or approximate solutions. However in 
most cases of practical interest, numerical 
techniques are applied to obtain the approximate 
solutions. The finite difference time domain 
(FDTD) method [1] is a full-wave and powerful 
numerical method for solving Maxwell's 
equations. The technique is one of the key 
simulation tools in study of electromagnetic 
propagation [2]. It is also a popular 
electromagnetic modelling technique in the 
general class of differential time domain  
 
 
 

numerical modelling methods. Other methods 
used today, include moment and element 
method. An important feature of FDTD method is 
that, the wave equation which is second order 
partial differential equations has to be expressed 
as two coupled first order partial differential 
equations. The method is an initial value problem 
formulation, thus the solution at any future time 
depend explicitly on the solution at earlier times 
[1][3]. When Maxwell’s differential form equations 
are examined, it can be seen that the time 
derivative of the electric field (E field) is 
dependent on the curl of the magnetic field (H 
field). This can be simplified to state that the 
change in the E field (time derivative) is 
dependent on the change in the H field across 
space (the curl); these result in the FDTD 
equation.  
 Although all electromagnetic phenomena  
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can be studied in empty space, this is an 
important part of any introductory study of wave 
propagation. In this paper, we embark upon a 
study of the electromagnetic waves in stratified 
medium. The theory of stratified media is 
concerned with the propagation of linearly 
polarized harmonic waves in systems of media 
which are either part wise homogeneous and/or 
normally inhomogeneous, i.e. their optical 
constant depends on the depth measured along 
the normal to the layer [4]. By stratified medium 
means medium that their index of refraction is a 
function of variable. This variable could be 
conductivity, permeability or permittivity of the 
medium. The propagation of EM waves in space 
is important from practical point of view. 
Astronomical information concerning particles in 
space their nature, distribution and shapes are 
obtainable from such studies. In metrology and 
mineralogy the study also allows deductions 
about climatic changes and for the 
forecast/prediction of weather changes. The 
study has gained a great deal of importance 
because of technological applications and 
developments.   
 
II. Related Works 
 
 In an attempt to solve the Maxwell’s 
equations for practical relevance, several papers 
have been published. [5], presents 1D FDTD 
model for Maxwell’s equation and subsequent 
implementation using MATLAB. The paper 
successfully demonstrates a working 1D-FDTD 
code that correctly implements PEC (perfect 
electric conductors) and PMC (Perfect magnetic 
conductors) boundaries. The code was also 
applied to investigate pulse reflections from 
dielectric slabs of various thicknesses and it was 
also found through simulation that, increasing the 
thickness of the slabs drastically reduces the low-
reflectivity bandwidth. Similarly, Ikata [3], gives 
the numeral solution of the Maxwell’s curl relation 
using central difference equation, in the work, 
FORTRAN code were used for the 
implementation of the algorithm by propagating 
half-sine wave into three different medium i.e. 
non conducting, partial conducting and 
conducting medium.  Also, [6] presents two 
methods for calculating the reflection of EM plane 
wave from a stratified media, backed by a PEMC 
(perfect electromagnetic conductors) based on 
FDTD technique. The first is an analytic 
approach, based on the propagators and wave-
splitting technique and the second is the 

numerical FDTD method. Hybrid finite element 
finite-difference time-domain (FE/FDTD) 
technique for solving complex electromagnetic 
problems was presented in [7], this method 
combines the computational simplicity of the 
structured FDTD scheme with the flexibility of the 
finite-element method (FEM) thus, these enables 
them to accurately model curved geometries, 
numerical results from their paper illustrates the 
accuracy of the method. [8], also present FDTD 
modeling of scatters in stratified media, the paper 
discusses a method whereby the electromagnetic 
fields scattered by a buried object can easily be 
calculated by the FDTD technique. One of the 
advantages of FDTD techniques is its simplicity 
and straightforward to implement as compared 
with FE method, also, the use of Cartesian grids 
makes grid generation to be relatively easy. In 
terms of memory requirement, the technique has 
proven most effective. One of the drawbacks of 
this technique is inability to model curve 
geometrical objects, as grids would usually 
provide approximations of the geometry of the 
structure with little details. Despite the limitations 
of this technique, it is still found useful in various 
real life applications.  
 The FDTD modelling studies has been 
proven highly significant and has been applied to 
model and solve real life application problems. 
FDTD models have been applied extensively in 
the field of geoscience. Muhkopadhyay et al [9], 
present an implementation of parallel 3D FDTD 
technique for propagating radar EM waves in 
borehole, the simulation study demonstrates that, 
borehole radar can be useful for mining as well 
as oilfield applications for imaging electrical 
discontinuity with high resolution. The model was 
also applied for case of layered medium and was 
found that, the amplitude of the propagating wave 
varies with the thickness of the sand layer. This 
property can be utilized to estimate the dielectric 
permittivity of the medium. The effect of borehole 
on radar traces has also been noticed; the radar 
traces are affected by the presence of borehole, 
layer thickness and scattering from sharp edges. 
The shape, signature and the initial travel time of 
the received waveform changes as the wave 
does propagates into the starter.  Similar studies 
have been presented in [10] [11] and [12]. 
Therefore, it would be of great importance and 
relevance to develop a model for FDTD for 
practical relevance.  
 This work is a modification to that 
presented in [3], the major enhancement is the 
methodology in solving the equations and 
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implementation. In this paper, we present a 
solution of Maxwell’s curl relation using forward 
difference method; codes were generated and 
subsequently, implementation in the mathematica 
environment version 7.0. The paper is organized 

as follows: Section II, provides related work, 
FDTD formulation is presented in section III; 
Section IV provides the simulation results and 
finally, Section V concludes the paper. 

 
 
III. FDTD FORMULATION 
A. SOLUTION OF MAXWELL’S CURL DIFFERENTIAL EQUATION USING FDTD METHOD 
 
Consider symmetric form of Maxwell’s curl relation in source free linear medium. 
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Where m an equivalent magnetic conductivity, and the medium parameters are assumed to be time 

independent.  
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A discretization scheme for equation (3.0) consists in using a Taylor series expansion for a function 

 xf  and writing the first derivative of  xf as: 
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Where 0x
 
is the point at which the derivative is evaluated and   is a small increment and it is usually 

to denoted space grid points;  

   zkyjxikji  ,,,,  ……………………………………………….................................   (6.0) 

And any function of space and time by; 
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   zkyjxifkjif n  ,,,,  ………………………………………. ...............................  (7.0) 

Where ji,  and k are integers which locate a grid points, zyx  ,,  are space increments along the 

respective axes and assumed to be same size, t is a time increment and n is an integer denoting the 

number of time steps. 
 
Applying the discretization procedure (5.0) to (3.0) leads to their forward finite difference equivalent, in a 
homogeneous medium. 
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 By considering 1




 mt
, the corresponding FDTD equation (3.0) in y and z coordinate  
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Similarly for the electric field vector E, we have: 
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Eqn (9) is used to compute new value for a field component at an interior grid point, and it depends on 
its preceding value of the components of the other vector at adjacent points. The FDTD algorithm (8-13) 
is a direct point-by-point approximation of the derivatives in the time independent Maxwell curl relations. 
Using forward difference this interpretation is useful in understanding how FDTD models wave 
propagations. 
 
IV.  REDUCTION OF MAXWELL’S EQUATIONS TO 2D MODEL 
 
  For computational complexity and the memory requirement for the FDTD simulation; it is 
common to find FDTD simulation experiments implemented on a 2-D lattice.  In this paper, we assume 

that the field components don’t depend on the z coordinate ( 0



z

). In this regards the plane 

electromagnetic field can be decomposed into transverse electric (TE) and transverse magnetic (TM) 

waves. These two waves are described by the relations:  

1) TE: 0:0  yxz HHE  

2) TM: 0;0  yxz EEH  

 
Considering TM wave then the corresponding finite difference relations are: 
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V. SIMULATION RESULTS 
 
A. INITIALIZATION 

The evaluation of the set of equations in section V, on introducing the initial values  jiE z
n ,  at the 

starting time t=0. Initializing the algorithm by putting n=0 in (15) and (16) gives 
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B. ALGORITHM 
 
This section describes the algorithm for the 
stratified medium. Wolfram Mathematica 
environment version 7.0 was used for 
implementation of the algorithm. Wolfram 
mathematica is founded by Stephen Wolfram in 
1987 [13]. Wolfram Research is one of the 
world's most respected software companies--as 
well as a powerhouse of scientific and technical 
innovation. Mathematica is a computational 

software program used in scientific, engineering, 
and mathematical fields and other areas of 
technical computing. It was conceived by 
Stephen Wolfram and is developed by Wolfram 
Research of Champaign, Illinois [14]. It has wide 
range of tools for complex number, arbitrary 
precision, interval arithmetic, symbolic 
computation, 2D and 3D data and function 
visualization and many more. Mathematica has 
capabilities for connecting to DLLs. SQL, Java, 
.NET, C++, FORTRAN, CUDA and MATLAB 

 
 

Algorithm: In this subsection the pseudo codes which implement the finite difference time domain 
algorithm to produce the results described is given. See Appendix A for nomenclature. 

 

 
1: Generating Pulse (The electric field in the z-direction) 
gaussian[x_, y_] := Exp[-((x - 4)^2 + (y - 5)^2)/10]; 
pulse[x_, y_] := gaussian[x, y]; 
 
            If x > xl And x < xu Then 
                If y > yl And y < yu Then 
                Ez(i, j) := gaussian[x, y]; 
                End If 
              Else 
                Ez(i, j) = 0# 
            End If 
2. Initializing array Hx & Hy (Magnetic fields in the x and y-direction) 
For i = 1 To Nx  
For j = 1 To Ny  
Hxt(i, j) = -DelT * (Ezt(i, j) - Ezt(i, j - 1)) / muy  
   Hyt(i, j) = DelT * (Ezt(i, j) - Ezt(i - 1, j)) / mux  
         
3. Initializing Time Step (Time stepping loop) 
For i = Nx1 To Nx2 - 1 
        For j = Ny1 + 1 To Ny2 - 1 
            Ezt(i, j + Ny2) = Ez(i, j + Ny2) + DelT * (Hyt(i + 1, j + Ny2) - Hyt(i, j + Ny2)) / epx _ 
                - DelT * (Hxt(i, j + Ny2 + 1) - Hxt(i, j + Ny2)) / epy 
    T = T + DelT 
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4. Advancing Hx & Hy (Advancing the Magnetic fields in the x and y-direction) 
For i = Nx1 + 1 To Nx2 - 1 
            For j = Ny1 + 1 To Ny2 - 1 
Hxt(i, j + Ny2) = Hxt(i, j + Ny2) - DelT * (Ezt(i, j + Ny2) - Ezt(i, j + Ny2 - 1)) / muy 
        Hyt(i, j + Ny2) = Hyt(i, j + Ny2) + DelT * (Ezt(i - 1, j + Ny2) - Ezt(i, j + Ny2)) / mux 
 
5. Set Correction (setting corrections and rewriting the Electric Field component in z-direction) 
  For i = 1 To Nx  
  Ezt(i, 0) = Ezt(i, 1) 
 Ezt(i, Ny) = Ezt(i, Ny - 1) 
            For j = 1 To Ny  
              Ezt(0, j) = Ez(1, j) + rCLF * (Ez(0, j) - Ezt(1, j)) 
        Ezt(Nx, j) = Ez(Nx - 1, j) + rCLF * (Ez(Nx - 1, j)  - Ezt(Nx - 1, j)) 
      
                 Ezt(0, 0) = Ezt(0, 1) 
                 Ezt(0, Ny) = Ezt(0, Ny - 1) 
                 Ezt(Nx, 0) = Ezt(Nx, 1) 
                 Ezt(Nx, Ny) = Ezt(Nx, Ny - 1) 
  

  
         
C.  RESULTS 
 
The above steps are coded for stratified media. 
The numerical data generated by the program 
code were sampled at various time steps from 
t0=10 to 90 time steps along the computational 
space and plotted. Figure 1 illustrates the 
propagation of half –sine pulse introduced at the 
computation space. In the first case, imagine a 
pulse to occur at some point within a very low 

conducting medium with the profile of half sine 
function at ten time steps i.e. t0=10 as shown in 
Fig 1a. For the second case imagine the same 
pulse enters a low conductive medium , thirdly, a 
pulse propagating into a conductive medium, with 
conductivity that is relatively higher than the 
second case and so on. The conductivity of the 
medium increase with increase in depth as the 
pulse enters into the medium. 
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Fig.1: Pulse at different time step 
Figure 1a, illustrate the pulse generated at 10 time steps, b, c, d, e, f, g, h and i shows the same pulse 

at 20, 30, 40, 50, 60, 70, 80 and 90 time step respectively. 
 
 
 The figures shows the advancement of 
the pulse into the medium, observed shift in the 
peak of the amplitude of the pulse when t0=10 
and t0=90. The figures could not show the 

attenuation of the pulse as the scale is removed 
to plot more pulse at different time step for 
transparency. An attempt to show the attenuation 
is made see figures 2a, 2b and 2c. 
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g h i 
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Fig. 2: Advancement of pulse 
 
 
 
Fig. 2a shows the entry of the wave into region of 
very low conductivity at time step 1, the 
conductivity is taken to be very small. The 
attenuation recorded is insignificant as the 

amplitude of the pulse is 0.006.  At time step 50 
in fig. 2b, the conductivity of the medium is high, 
the amplitude of the pulse falls sharply from 

0.006 to 
11101 x representing about 99.99% 

 
 

a  

c 

b  
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decrease in amplitude coefficient. This further 

drastically falls to 
20102 x for time step 90 as 

shown in fig 2c which is 2 order magnitudes 
lower in attenuation of the signal as compared 
with that in fig 2b. The attenuation of the signal is 
accounted by the fact that, wave normally in a 
medium with finite non-zero conductivity; the 
wave is being absorbed by the medium as it 
propagates, because the non-zero conductivity 
gives rise to an energy loss through joule heat 
(representative of a dissipative medium). This is 
similar results presented by [9], modeling 
borehole radar electromagnetic wave 
propagation in conductive media. The scattering 
from the sharp edge of the ore body interferes 
with the reflected waves and does increase or 
decrease the amplitude of the received wave 
depending upon the relative path length. As the 
conductivity of the host rock increases and, 
hence, intrinsic attenuation increases, the 
amplitude of the reflected wave decreases. 
 
VI.  CONCLUSION 
 
FDTD technique is one of the key simulation 
tools in study of electromagnetic propagation. In 
this paper, we present a solution of Maxwell’s 
curl relation using forward difference method; 
codes were generated and subsequently 
implementation in the mathematica environment 
version 7.0. The code is applied to investigate 
propagation of EM waves in stratified medium. It 
was found through simulation that, increase in 
conductivity or permeability of the medium 
contributes, in the same way, to an increase in 
the attenuation of the signal.  
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APPENDIX A 
 
 
Glossary of primary variables which appears in the pseudo code 
 
x1, x2, y1, y2: Coordinate which define the computation boundary planes 
Nx, Ny: number of subdivisions along x or y axis 
N: number of time steps 
Delx, Dely: space increment in x or y direction 
DelT: time increment 
Lambd: wave length 
Tmax: maximum number of time steps 
SF: source function 
Hx, Hy: Magnetic strength along x or y at a point 
Ez: electric strength along at a point 
CLF: courant factor  
Sigma: conductivity of the medium 
Vc: velocity of light in free space 
Vo: velocity of light in the medium 
muo, epo: permeability and permittivity of free space respectively 
mur, epr: permeability and permittivity of the medium respectively 
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