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ABSTRACT

Software like ILWIS and GRASS GIS can be employed for remote sensing image processing
and geographic information systems applications. The modules of the aforementioned image
processing software are based on conventional multi-class classifiers/algorithms such as maximum
likelihood classifier. These conventional multi-class classifiers/algorithms are usually written in
programming languages such as C, C++, and python. The objective of this research is to experiment the
use of the parametric Gaussian mixture model multi-class classifier/algorithm for multi-class remote
sensing task, implemented in MATLAB. MATLAB is a programming language just like C, C++, and
python. In this research, a computer program implemented in MATLAB is used to experiment the
Gaussian mixture model algorithm. Using the supervised classification technique, both simulated and
empirical satellite remote sensing data are used to train and test the Gaussian mixture model algorithm.
For the purpose of validating the experiment, the resulting classified satellite image is compared with the
ground truth data. For the simulated modelling, twenty-five pixels are used for the modelling, out of
which six pixels are used for training while nineteen pixels are used for testing. All the nineteen tested
pixels are correctly classified. For the empirical modelling, some of the pixels are wrongly classified; the
computed overall accuracy is 85.35%; which indicates substantial agreement between the classification
result and the reference data.
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Preamble
The process of relating pixels in a satellite image to known land cover is called “image

classification.” The algorithms used to effect the classification process are called “image classifiers”
(Mather, 1987). The extraction of land cover information from satellite images using image classifiers
has been the subject of intense interest and research in the remote sensing community (Foody &
Mather, 2004). Some of the traditional hard classifiers such as minimum distance to means and the box
classifiers have been in use in remote sensing studies (Peddle et al., 1994; Rogan et al., 2002; Li et al.,
2003; Mahesh & Mather, 2003). Because of the strong desire to maximize the degree of land cover
information extracted from remotely sensed data research into new methods of classification has
continued (Foody & Mather, 2004). Recently soft classification algorithms such as artificial neural
network, k nearest neighbour, and Gaussian Mixture Model (GMM) have become part of the
mainstream classification algorithms. The application of GMM to remote sensing image classification
problems is uncommon. The objective of this research therefore is to illustrate how the GMM algorithm
can be applied to solving multi-class problems in remote sensing image classification. GMM is a
parametric probability density function represented as a weighted sum of Gaussian component
densities. GMM is commonly used as a parametric model of the probability distribution of continuous
measurements.
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Gaussian mixture model
GMM presumes that the patterns ix  originate from a probability density )(xp (Bishop, 1995).

This density is a linear combination of Gaussian functions )|( jxp ,
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The normalisation constant jN  is selected such that the integral of )|( jxp  equals one (a necessary
condition for a probability density). The negative exponent is a weighted squared distance (called
Mahalanobis distance) between x  and the centre jc ; the corresponding weights are given by the

symmetric matrix jA . The boundary that has a Mahalanobis distance to the centre jc  equal to one is a

hyper-ellipsoid. The density )(xp  is a weighted sum of the local densities )|( jxp (Bishop, 1995),
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To normalise )(xp , the weights )( jP  must sum to one,  
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1)( . Therefore, )( jP  can be

interpreted as the probability that patterns originate from the unit j . It is called “prior probability.” The

goal of the mixture model is to find the unknown parameters jc , jA , and the priors )( jP  for each unit j

such that the likelihood, )(1 i
n
i xpL  , to obtain the distribution  ix  given the density )(xp  is

maximal (Bishop, 1995). To solve this optimization problem it is common to use a variant of the
expectation maximization algorithm (Bishop, 1995). It consists of two steps which iterate until
convergence is reached. In the expectation step, the soft-assignment )|( ixjP  for all j  and i  is

computed based on a given estimate of the parameters jc , jA , and )( jP ; )|( ixjP  is called
“posterior probability.” It is computed using Bayes' theorem1,
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      In the special case of uniform Gaussians that all have the same width and weight )( jP , is the same

as the Gibbs distribution. In the maximization step, the Gaussian's parameters jc , jA , and )( jP  that

maximize the likelihood given all )|( ixjP  can be directly computed (Bishop, 1995). The result is that

the centre jc  is the weighted mean of the set  ix ,

1The probability  of observing both  and j  can be written in two ways,
; is the probability of  (independent of ),  is the

probability of (independent of ),  is the probability of  under the condition that   is
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given, and )|( xjP  is the probability of j  under the condition that x  is given. Reorganizing equation
b1 about )|( xjP  yields the Baye’s theorem:
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and the matrix jA  is the inverse of the weighted covariance matrix jC ,
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The inverse can be computed by extracting all eigenvectors of jC . Thus, the axes of the mentioned
hyper-ellipsoid are the principal components of the local data distribution. The size of this hyper-ellipsoid
is given by the eigenvalues l

j  from the Principle Component Analysis (PCA) (the semi-axis length of

unit j  in the direction l  equals l
j ). Finally, the result for the prior probabilities is (Bishop, 1995),





n

i
ixjP

n
jP

1
)|(1)( . (6)

      It can be shown that alternating these expectation and maximization steps increases the likelihood
L  in each iteration step (Bishop, 1995). However, local maxima are not avoided. Further, single
isolated data points (outliers) can make the algorithm unstable (Archambeau et al., 2003). If just one
pattern is assigned to a unit (that is, the other patterns have almost zero )|( ixjP ) the variance of the
local Gaussian collapses to zero.

Simulated modelling
Given a simulated ground truth data (Table 1) with a matrix size of 5 x 5, and equivalent

simulated satellite remote sensing multi-spectral data that consist of three spectral bands (see Tables 2,
3, and 4), we intend to the classify the satellite data given in Tables 2, 3, & 4 into  three classes: water,
undeveloped, and developed. Our objective here is to use the satellite spectral bands given in Tables 2,
3, & 4 to derive the ground truth data given in Table 1. All the three spectral bands in Tables 2, 3, and 4
contain hypothetical DN1 values.

Table 1: Ground truth data (water=1, undeveloped cells=2, and developed cells=3)

1 1 1 1 2
1 1 1 2 2
3 3 1 2 2
3 3 2 2 2
3 3 3 2 2

1A Digital Number or DN is the value stored within a pixel cell of an image. Typically, the DN of the pixel
represents the amount of light reflected back to the satellite/sensor. A DN of 0 will appear as black,
while a DN value of 255 will appear white.
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Table 2 Band 1

1 0 4 2 26
8 10 9 27 20
42 40 7 26 24
47 43 22 29 30
46 45 50 23 25

Table 3 Band 2

78 73 72 74 103
75 70 80 104 101
180 190 76 106 108
186 182 100 109 107
188 184 183 105 110

Table 4 Band 3

30 36 34 37 66
33 38 31 67 63
90 93 39 68 62
97 96 60 65 61
92 98 99 66 64

      To classify the satellite data given in Tables 2, 3, & 4, a training set has to be randomly selected.
The training data (six pixels) consist of elements from the three classes (see Table 5).

Table 5: Training data

Water Band 1 (1,2) = 0 Band 2 (1,2) = 73 Band 3 (1,2) = 36
Water Band 1 (2,1) = 8 Band 2 (2,1) = 75 Band 3 (2,1) = 33
Undeveloped Band 1 (1,5) = 26 Band 2 (1,5) = 103 Band 3 (1,5) = 66
Undeveloped Band 1 (2,4) = 27 Band 2 (2,4) = 104 Band 3 (2,4) = 67
Developed Band 1 (3,1) = 42 Band 2 (3,1) = 180 Band 3 (3,1) = 90
Developed Band 1 (4,2) = 43 Band 2 (4,2) = 182 Band 3 (4,2) = 96

For modelling convenience let the remaining
nineteen cells that were not used for training the
classifier (see Table 6) represent the test set.
Conventionally the size of the test set is usually

smaller than that of the training set in machine
learning. But for the purpose of illustration, let the
remaining nineteen cells serve as the test set.
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Table 6: Test data

Band 1 (1,1) = 1 Band 2 (1,1) = 78 Band 3 (1,1) = 30
Band 1 (4,1) =
47

Band 2 (4,1) = 186 Band 3 (4,1) = 97

Band 1 (5,1) =
46

Band 2 (5,1) = 188 Band 3 (5,1) = 92

Band 1 (2,2) =
10

Band 2 (2,2) = 70 Band 3 (2,2) = 38

Band 1 (3,2) =
40

Band 2 (3,2) = 190 Band 3 (3,2) = 93

Band 1 (5,2) =
45

Band 2 (5,2) = 184 Band 3 (5,2) = 98

Band 1 (1,3) = 4 Band 2 (1,3) = 72 Band 3 (1,3) = 34
Band 1 (2,3) = 9 Band 2 (2,3) = 80 Band 3 (2,3) = 31
Band 1 (3,3) = 7 Band 2 (3,3) = 76 Band 3 (3,3) = 39
Band 1 (4,3) =
22

Band 2 (4,3) = 100 Band 3 (4,3) = 60

Band 1 (5,3) =
50

Band 2 (5,3) = 183 Band 3 (5,3) = 99

Band 1 (1,4) = 2 Band 2 (1,4) = 74 Band 3 (1,4) = 37
Band 1 (3,4) =
26

Band 2 (3,4) = 106 Band 3 (3,4) = 68

Band 1 (4,4) =
29

Band 2 (4,4) = 109 Band 3 (4,4) = 65

Band 1 (5,4) =
23

Band 2 (5,4) = 105 Band 3 (5,4) = 66

Band 1 (2,5) =
20

Band 2 (2,5) = 101 Band 3 (2,5) = 63

Band 1 (3,5) =
24

Band 2 (3,5) = 108 Band 3 (3,5) = 62

Band 1 (4,5) =
30

Band 2 (4,5) = 107 Band 3 (4,5) = 61

Band 1 (5,5) =
25

Band 2 (5,5) = 110 Band 3 (5,5) = 64

      The computer program used to model the
GMM algorithm was implemented in MATLAB. To
train the GMM classifier the means of each class
was computed using the training data given in
Table 5. The variance of each class was also
computed. An a priori probability for each class
was chosen such that the a priori probability
fulfils:  0<a priori<1; 0.5 was chosen for each

class. Then a posteriori probabilities were
computed for each test point (see Table 8). For
each pixel, based on the maximum likelihood
principle, the class with the highest a posteriori
probability was assigned to that pixel. The model
also computes the mixing proportion for each
class (see Table 7). The training and test results
are display in Tables 7 and 8 respectively.
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Table 7: Training result

Gaussian mixture distribution with 3 components in 3 dimensions
Component 1: Water
Mixing proportion: 0.333333
Mean:     4.0000   74.0000   34.5000

Component 2: Undeveloped
Mixing proportion: 0.333333
Mean:    27.5000 103.5000   66.5000

Component 3: Developed
Mixing proportion: 0.333333
Mean:    42.5000 181.0000   93.0000

Variances of components 1, 2, & 3 respectively
1.0e+003 * [0.3079    2.4443    0.6911]

Table 8: Test result (water =1, undeveloped =2, and developed =3)

Cell Posterior probability Class Remark
Water Undeveloped Developed

1 0.9004 0.0993 0.0004 1 Correct
2 0.0002 0.0670 0.9328 3 ,,
3 0.0003 0.0790 0.9207 3 ,,
4 0.7752 0.2234 0.0013 1 ,,
5 0.0006 0.0939 0.9054 3 ,,
6 0.0003 0.0751 0.9246 3 ,,
7 0.8652 0.1343 0.0006 1 ,,
8 0.8202 0.1787 0.0011 1 ,,
9 0.7938 0.2049 0.0013 1 ,,
10 0.2468 0.7071 0.0461 2 ,,
11 0.0001 0.0595 0.9404 3 ,,
12 0.8639 0.1355 0.0006 1 ,,
13 0.1275 0.772 0.1005 2 ,,
14 0.1125 0.7732 0.1142 2 ,,
15 0.1732 0.751 0.0758 2 ,,
16 0.2465 0.7052 0.0483 2 ,,
17 0.1839 0.7419 0.0742 2 ,,
18 0.1288 0.7745 0.0967 2 ,,
19 0.1542 0.7546 0.0911 2 ,,
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Table 9: Confusion matrix for GMM classification

Reference data
Water Undeveloped Developed Unclassified

Predicted data
Water 8 0 0 0
Undeveloped 0 10 0 0
Developed 0 0 7 0
Unclassified 0 0 0 0

It can be discerned from Table 8 that all the test points were correctly classified by the GMM algorithm.
Using the confusion matrix visualisation (Table 9), the overall accuracy can be computed as the sum of
the diagonal elements in the matrix divided by all the elements in the matrix. Therefore, overall accuracy
= 25/25 = 100%.

Empirical modelling
A multispectral Landsat 7 ETM image of Porirua, New Zealand, acquired in 2006 was used for

the experiment (see Figure 3). The Landsat image consists of seven spectral bands, and has a cell size
of 25m x 25m. The original satellite data were first reviewed in GIS (ArcGIS software); and all seven
bands were extracted using the layer properties tool and visualised in MATLAB (see Figure 3). Before
importing the data into MATLAB, they were first converted from raster to ASCII data using the ArcGIS
conversion tool. MATLAB cannot read raster files; hence the data must be in ASCII format for onward
processing in MATLAB. In MATLAB the final study area was extracted from the original satellite image.
Some regions of the satellite image were affected by cloud, which was why the final study area did not
include those regions affected by cloud. All the seven bands were used for the classification experiment.
The stratified random sampling was used to select the training data. The classified image was visualised
in the GIS.
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The results of the GMM experiment are given in Figure 1 and Table 10. The confusion matrix
given in Table 10 was computed by comparing the result of the GMM classification and the reference
data given in Figure 2. Using the confusion matrix given in Table 10, the computed overall accuracy was
85.35%.
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Figure 1 Extracted bands 1 - 7 of Landsat image of Porirua and original Landsat image of Porirua, New Zealand
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Figure 2 Classification result for GMM
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Table 10: Confusion matrix for GMM

Reference data
Developed Undeveloped Water Unclassified

Predicted data
Developed 9411 46 0 0
Undeveloped 7686 37117 0 0
Water 190 1233 6817 0
Unclassified 0 0 0 0

CONCLUSION
This study illustrated basically how the

GMM algorithm can be applied to the
classification of satellite remote sensing data.
The essence of first illustrating the experiment
using simulated data was to help explain how the
empirical experiment was implemented. In the
simulated modelling, from Table 9, no water,
undeveloped, and developed cells was wrongly
predicted.  In the empirical modelling, from Table
10, 46 undeveloped cells were wrongly predicted
as developed; 7686 developed cells were
wrongly predicted as undeveloped; 190 and 1233
developed and undeveloped cells were
respectively wrongly predicted as water; and no
cell was left unclassified. . From Tables 9 and 10,
note that, the diagonal elements are the correctly
classified pixels. The high computed overall
accuracy espouses previous findings that
adjudge the Gaussian mixture model as one of
the most robust parametric classifiers.
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