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ABSTRACT 
 
The Bornu Basin in northeast Nigeria was studied using high-resolution airborne magnetic data with the 
objective of improving the reliability of mapped magnetic and geothermal anomalies, and depth solutions. 
Necessary enhancement operations like analytic signal (ASIG), upward continuation, depth assessment 
methods involving standard Euler deconvolution (SED) and source parameter imaging (SPI) as well as spectral 
analysis applying the centroid technique were applied. The middle and southern parts are dominated by high 
frequency anomalies as revealed by the ASIG map. Furthermore, the magnetic data, when upward continued to 
5 km, revealed avalanche of deeply buried igneous intrusions that created near-surface magnetic sources and 
geologic structures. Maximum thicknesses of sedimentary series estimated from SED and SPI, are respectively 
~5974.7 and ~5885.3 m. These values correlate correlated relatively well with depth to the top boundary (Zt) of 
~6550 m obtained from the centroid technique. These depth estimates reveal sequence of thick sediments 
overlying igneous intrusions and falls under the prospective geothermal anomaly zones characterised by high 
geothermal gradient (GG) (>55 °C/km) and heat flow (HF) (>130 mW/m

2
) values. Areas characterised by high 

geothermal anomalies correspond to igneous intrusion-dominated shallow Curie point depths (CPD or Zb). 
 
KEYWORDS: Magnetic Method; Source Parameter Imaging; Standard Euler Deconvolution; Curie Point Depth; 
Geothermal Gradient; Heat-Flow, Bornu Basin, Nigeria 
 
INTRODUCTION 
 
The Bornu Basin is a southward extension of Chad 
Basin that runs into several African countries 
including Central African Republic, Chad, Niger, and 
Cameroon, into northeastern Nigeria (Okosun, 1995). 
Several researchers have studied the geology 
(Okosun, 1995; Okosun, 1992; Avbovbo, et al., 1986; 
de Klasz, 1978; Matheis, 1976, and some references 
therein), stratigraphy (Nwankwo and Ekine, 2009; 
Okosun, 2000; Petters and Ekweozor, 1982), 
tectonic evolution and regional framework (Genik, 
1992) of the Bornu Basin. Geophysical and 
geological evidence suggests the coexistence of 
igneous rocks with some horst and graben structures 
that are overlain by somewhat thick sediments 
(Nwankwo et al., 2012).  
 
 
 
 
 
 
 
 
 
 
 
 

Heat-flow, Bouguer gravity, and seismic results 
reveal the existence of structural and stratigraphic 
traps (Nwankwo et al., 2012). Recently, the Federal 
Government of Nigeria commissioned geoscientists 
to conduct integrated investigation involving seismic, 
magnetic, geochemical, paleoclimatography, rock 
facies assessments, aerial photography, magnetic 
investigation, gravity prospecting and exploratory 
boreholes in the mainly Cretaceous inland basins of 
Nigeria  (Ekwok et al., 2021a; 2019). Sedimentary 
basin analysis, tectonics and tectono-sedimentary 
framework (Ofoegbu, 1984; Burke et al., 1971), and 
geophysical characterization of mineral deposits 
(Eldosouky et al., 2022; Ekwok et al., 2022a; 2022b; 
2022c; 2022d; 2022e; 2021b; 2020a) can be mapped 
from the analysis and interpretation of potential field 
dataset. 
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On the whole, magnetic method provides a quick 
way of exploring depocentres, estimating sediment 
thicknesses, assessing mineralised areas (Ekwok et 
al., 2021a; 2020a), delineating horst and graben 
structures (Ekwok et al., 2021b), as well as 
geothermal systems/structures (Abraham et al., 
2019). Also, it is reported that geologic structures 
determine the location, concentration, and pattern of 
hydrothermal mineralization (Eldosouky and 
Elkhateeb, 2018), polymetallic anomalies, Copper-
Uranium mineralization (Ekwok et al., 2021c; Boadi 
et al., 2013) including, the character and orientation 
of groundwater movement (Ekwok et al., 2020b).  
Currently, reconnaissance hydrocarbon exploration, 
minerals and geothermal energy investigations in the 
inland basins of Southern of Nigeria are being 
conducted employing the recent high-resolution 
magnetic data. These data plus improvement in 
technology have made it progressively feasible to 
delineate subtler magnetic anomalies/structures, 
offer a better understanding of the buried geothermal 
systems/structures (Abraham et al., 2019) and 
simplify interpretations (Eldosouky and Elkhateeb, 
2018). In general, the main applications of airborne 
magnetic data are to enhance detection of targets, 
resolve the position and depth to magnetic and 
geothermal anomalies.  

Essential enhancement operations like analytic 
signal (Nabighian, 1972), upward continuation 
(Nabighian, 1984; Gunn, 1997), depth assessment 
methods (such as standard Euler deconvolution and 
source parameter imaging) (Thurston and Smith, 
1997) as well as spectral analysis involving the 
centroid method (Bhattacharyya and Morley, 1965) 
were applied. The magnetic dataset were subjected 
to spectral analysis using the enhanced centroid 
method (Bhattacharyya and Morley, 1965) to 
generate CPD, GG and HF maps. Curie depth 
results from magnetic data can be used to generate 
reliable geothermal information in geologic basins 
characterized by intrusions, such as the  Bornu Basin 
(Bansal et al., 2016; 2013; 2011). The modified 
centroid technique permits depths to the top and 
centroid of the magnetic body to be estimated 
(Bansal et al., 2011). This procedure, which has an 
advantage over traditional methods, allows 
convenient computation of basal depths of the 
magnetic bodies (Bansal et al. 2016). To improve the 
reliability of the mapped magnetic and geothermal 
anomalies, as well as depth solutions, several 
techniques including spectral analysis, enhanced 
depth estimation methods, and better-quality filtering, 
were applied to the same magnetic anomalies.  
Location and geology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Geologic map of the study area 
 
Bornu Basin (Figure 1) is located between longitudes 

11
o
30and 14

o
00E of the Greenwich Meridian and 

latitudes 12
o
00 and 14

o
00N of the Equator in 

Nigeria’s northeastern border with Chad, Cameroon, 
and Niger Republics. It is a southward extension of 
the Chad Basin, (Kingston et al., 1983) into 

northeastern Nigeria (Genik, 1993). With variable 
elevations above sea level (200-500 m), its dominant 
structures consist of a system of physically 
disconnected but contemporaneous and genetically 
connected CARS (Central African Rift System and 
WARS (West African Rift System) (Hamza and 
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Hamidu, 2011). According to Fairhead and Green 
(1989), the WARS and CARS originated from the 
breakup of the Gondwana, and the consequent 
creation of Indian and South Atlantic Oceans at 
about 120-130 Ma. Information regarding the 
development and tectonic structure of the  Bornu 
Basin have been properly documented (Genik, 1993; 
Genik, 1992; Fairhead and Green, 1989). Evidence 

gathered from geological and geophysical 
investigations show a diverse sequence southwest 
ward stretching of Cretaceous grabens from the 
Benue Trough in central Nigeria (Nwankwo et al., 
2012). These findings point to the existence of 
shallow igneous intrusions coexisting with horst and 
graben structures (Genik, 1993).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The stratigraphic succession, average thicknesses of formations and thicknesses  recorded in 
the studied wells in the Nigerian  sector of the Chad Basin (Carter et al.,  1963; Avbovbo et al., 1986). 
 
Okosun (2000), and Petters and Ekweozor, (1982) 
described the stratigraphic settings of the Southern 
Chad Basin (Figure 2). Within the basin, the 
underlying Precambrian basement is overlain by 
Bima Formation characterised by poorly sorted, 
continental, sparingly fossiliferous, and feldspathic, 
medium-coarse grained sandstones. Bima sandstone 
(characterised by shale intercalations) is overlain by 
a transitional calcareous deposit (Gongila 
Formation), composed mainly of calcareous shale 
and sandstone deposits (Nwankwo et al., 2012; 
Carter et al., 1963). The piling of sediments that 
formed the Gongila Formation provides primary 
evidence of marine incursion into the Chad Basin. 
The Albian-Turonian marine transgression resulted in 
the deposition of Fika-Shale Formation (Olugbemiro 
et al., 1997) that continued into Senonian. A 
regressive depositional phase followed the Turonian-
Senonian deposits. The estuarine/deltaic 
Maastrichtian Gombe Sandstone is composed of 
siltstones, shales and ironstones intercalations. 
Between Late Maastrichtian to the end of the 
Cretaceous, extensional deformations were 
witnessed in the Chad Basin. This tectonic event 
caused the formation of an elongated graben system 
in the Northeast-Southwest direction. According to 
Carter et al. (1963), the relic basin that followed this 
distortion created the location for the Tertiary Kerri-
Kerri Formation that unconformably overlie the 

Cretaceous sediments. The Chad Formation 
continental (lacustrine) deposits were deposited 
unconformably over the Kerri-Keri Formation during 
the Pleistocene and perhaps the Pliocene. Its central 
and southern areas witnessed widespread volcanic 
activities in the Tertiary-Recent period (Burke, 1976). 
Sand dunes are currently building up in the Chad 
Basin with river alluvium, and deltaic and lagoonal 
clays being the youngest deposits, which cover some 
of Lake Chad's south and southwest shores 
(Olugbemiro et al., 1997).  
 
METHODS 
The analytic signal method (Nabighian, 1984; 
Nabighian, 1972) generates peak responses over 
high anomaly gradient. As a result of the inherent 
problem connected with reduced-to-pole process, the 
ASIG is usually applied to magnetic data obtained at 
low magnetic latitude. The long wave-length 
anomalies emanating from deeply buried magnetic 
bodies were appraised using the upward continuation 
technique (Telford et al., 1990). SED and SPI 
techniques, which, unlike several other computer-
assisted depth estimation methods, do not assume 
any specific geologic model (Casto, 2001; 
Thompson, 1982), were used to generate imageries 
from which depths to basement and various 
magnetic sources were determined (Reid et al., 
1990; Thurston and Smith, 1997; Smith et al., 1998). 
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The analysis can yield an appropriate geologic 
model, depth estimates, and interpretable results, 
particularly when the geology of the study area is 
well understood (Thurston and Smith, 1997). 
Furthermore, the centroid method of spectral 
analysis, another powerful tool for estimating depths 
to top (Zt), bottom (Zb) and the centroid (Zc) of the 
magnetic layer (Tanaka et al., 1999, 2017; Wang and 
Liu, 2018; Okubo, 1985), GG and HF (Abraham et 
al., 2019; Bouligand et al., 2009; Ross et al., 2006), 
was also implemented. It is frequently employed in 
conjunction with the azimuthally average power 

spectrum procedure (Wang and Liu, 2018). Ross et 
al. (2006) reported that the spectral peak technique 
is focused mainly on determining the exact 
wavenumber at the peak of the anomaly. However, 
Bouligand et al. (2009) showed from experimental 
results that most logarithmic power spectra 
generated from magnetic anomalies do not have 
peaked anomalies. Thus, instead of spectral peaks, 
the slope matching procedure of the centroid 
technique can be used to make optimal estimates. 
Details of this procedure can be found in Tanaka et 
al. (1999).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  Reduced-to-equator total magnetic intensity map. 
 
Data acquisition, reduction and processing  
The high-resolution aeromagnetic data used in this 
study was acquired by Fugro Airborne Surveys 
(FAS), Canada, using a Flux-Adjusting Surface Data 
Assimilation System. Basic flight parameters 
comprising flight-line, tie line, and terrain clearance 
were generally kept low at 0.1, 0.5, and 0.08-0.1 km, 
respectively. Furthermore, FAS carried out the 
necessary corrections and subsequently, reduced 
the regional field to total magnetic intensity (TMI) 
data, which were then displayed in color raster 
format (Figure 3). Because the data were measured 
at a low latitude, the magnetic data were reduced-to-
equator (RTE) because TMI subjected RTE filter 
generates more reliable results, especially at middle 
and lower latitudes (Jain, 1988; Leu, 1981).  
 
RESULTS 
Airborne magnetic data have been qualitatively 
interpreted for long wave-length magnetic anomalies, 
structures controlling mineralisation (Ekwok et al., 
2019), tectonic influence on groundwater yield 
(Ekwok et al., 2020b) and polymetallic-magmatic 
hydrothermal deposits (Ekwok et al., 2021c). In the 

Benue Trough, magnetic data have been used to 
quantitatively assess sediment thicknesses (Ekwok 
et al., 2021a; 2019), tectonic evolution (Ajakaiye and 
Burke, 1973; Ofoegbu, 1984; Fairhead and Green, 
1989), basement framework (Ekwok et al., 2021b; 
Agagu and Adighije, 1983; Genik, 1993; Genik, 
1992), and geothermal anomalies (Abraham et al., 
2019).  
Peak responses are produced by the ASIG 
(Nabighian, 1972) over discrete magnetic sources. 
The direction of the magnetic body has no effect on 
the amplitude of magnetization produced by ASIG 
(Nabighian, 1972). Different sources of 
magnetisations delineated as low (blue colour) -
0.003421-0.008461 nT/m

2
, intermediate (lemon 

green-yellow colours) -0.009898-0.017579 nT/m
2
, 

and high (red-pink colour) -0.019647-0.093958 nT/m
2
 

were mapped (Figure 4a). Regions with high 
magnetisation are coincident with near-surface 
intrusive bodies/basement highs coexisting with the 
horst/graben structures that characterised the  Bornu 
Basin (Nwankwo et al., 2012; Genik, 1993). To 
elucidate the main crustal blocks and igneous 
intrusions responsible for near-surface 
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magnetisations and geologic structures, the TMI data 
were upward continued (Gunn, 1997) up to 5 km so 
as to attenuate short wave-length magnetic sources 
(Figure 4b). Figure 4b shows deeply buried ridge-like 
intrusive body described as A-B characterised by 
red-pink colour (that runs through Belle, Geidam, 
Furam, Magumeri, Bidda, Ngalewa and Dikwa) which 
trends in E-W direction. Also in the middle and 
northern portions of Figure 4b, imprints of tectonic 

origin were identified along C-D. the upward 
continued map reveals tectonic signatures in the 
central and towards the northern portions of the 
investigated area described as C and D. These 
observed anomalies related to the basin horst of the 
study area are bordered by synclines (grabens) 
defined by lemon green-blue colours. In addition, 
Figure 4b clearly showed the E-W weak zone 
(denoted by blue color) that is deeply buried. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: (a) Analytic signal and (b) total magnetic intensity data upward continued 5000 m maps. 
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To assess the locations and various depths to 
magnetic sources, depth determination methods 
involving SED and SPI were used. These techniques 
are suitable for delineating isolated/multiple magnetic 
source geometries and vertical contact, as well as 
magnetic susceptibility disparity (Telford et al., 1990). 
Figure 5 depicts the mean depths derived from TMI 
data. The approximated depths to shallow, 
intermediate and deep magnetic bodies are shown in 
Figure 5a, ranging from 130.2 - 917.6 m (red-pink), 
1044.1 -1572.3 m (yellow-red), and 1725.5 - 5974.7 
m (lemon green-blue), respectively. Similarly, depth 
estimates generated from the SPI procedure (Figure 
5b) range from 286.1 - 615.2 m (red to pink) for 
shallow, 695.5 - 1038.7 m (yellow to red) for 
intermediate, and 1145.0 - 5885.3 m (lemon-green to 
blue) for deep-seated magnetic bodies. Furthermore, 
the undulating configuration of the underlying 
basement topography was elucidated by the wide-
ranging depths (Figure 5) of magnetic sources. From 
the results (Figure 5), areas characterized by 

intermediate-high magnetization (yellow-pink) are 
attributed to localised high residual magnetisations 
linked to ferruginous sediments, igneous intrusions 
and associated horst/graben structures (Nwankwo et 
al., 2012) of the area. Burke (1976) reported that the 
middle and southern portions of Bornu Basin 
experienced widespread volcanic activities in late 
Tertiary-Recent times. The Precambrian and 
sedimentary rocks within these regions are 
metamorphosed and characterised by various 
geologic structures. The area has been described by 
Olugbemiro et al. (1997) to be blanket by sand 
dunes, river alluvium, and deltaic and clay 
sediments. Furthermore, the predominance of blue 
(Figure 5) in the black polygon (Gubio, Furam, and 
Bidda) indicates that the region is characterised by 
comparatively thickest pile of sediments, with 
approximate thickness of of 5974.7 m and 5885.3 m 
obtained from SED and SPI methods, 
correspondingly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: (a) Standard Euler deconvolution (structural index=1.0; max. % depth  tolerance=15.0, window 
size=10) and (b) source parameter imaging maps. 
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Figure 6: Curie point depth (km) 
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Figure 7. (a) Geothermal gradient, and (b) heat flow contour maps   
 
Magnetic technique is a potential tool that can be 
applied in the evaluation of the lateral extent of 
several high temperature geothermal sources in 
young volcanic rocks (Ben et al., 2022a; 2022b). To 
ensure various geothermal anomalies are well 
mapped, the magnetic data of investigated area were 
sectioned into 61 spectral blocks with 50% overlay of 
each block. For each spectral block, a power 
spectrum plot was created, and related parameters 
such as Zc, Zt, CPD or Zb, GG, and HF were 
calculated (Table 1).  
The centroid depths were estimated to vary from 
6.83-10.92 km (with a mean depth of 8.60 km) while 
the top depth ranges between 2.92 and 6.55 km, with 
a mean of 4.52 km. The Zt (2.92-6.55 km) which is 
like depth to basement (Lawal and Nwankwo, 2017) 
falls in the range of depth solutions obtained in the 
Benue Trough (Ekwok et al., 2021b; 2021c). CPD of 
the investigated location ranged from 2.92-6.55 km, 
and mean value of 4.52 km, and the gridded result 
(Figure 6) shows shallow CPD dominance (red 
colour) in the northern and southeastern areas. The 
GG results range from 33.64-61.05 °C/km, and mean 
of 46.80 °C/km. Furthermore, heat-flow observations 
vary between 84.11 and 152.63 mW/m

2 
(average 

heat flow rate of 117.01 mW/m
2
). Semi-oval 

structures in the south and southeast (Figure 7) of 
the investigated area reveal zones of high GG and 
heat-flow. Previous studies have generally stated 
that CPD and other related parameters are 
dependent on tectonic events (Ejiga et al., 2022; 
Lawal and Nwankwo, 2017).  
 
DISCUSSION OF RESULTS. 
The Bornu Basin which is described as an interior-
sag basin is genetically related to the CARS and 
WARS (Hamza and Hamidu, 2011; Kingston et al., 
1983). The discovery of commercial hydrocarbon in 
adjoining basins in neighbouring Niger and Chad 
Republics have triggered various geoscience 
investigations of the basin (Nwankwo et al., 2012; 
Obaje et al., 2004a; 2004b; Petters and Ekweozor, 
1982). The synclinal structure at the northwestern 
flank of the study that coincide with N’del Edgi 
graben that extends into Nigeria from the Niger 
Republic was revealed by the upward continued map 
(Figure 4b). This area is characterized by 
intermediate sedimentation (Figure 5).Furthermore, 
some pockets in the central and extensive 
occurrence of deeply buried intrusions in the 
southern portions of the study location that were 
previously reported by Nwankwo et al. (2012), Genik 
(1993), Fairhead and Green (1989) were delineated. 
These intrusions are covered by the Tertiary-
Cretaceous sedimentary series (Olugbemiro et al., 
1997) with estimated thickness that ranged 130.2 to 
5974.7 m (Figure 5).  
Furthermore, vital geothermal parameters were 
evaluated from the magnetic data. The Zt (2.92-6.55 
km) which is somewhat depth to magnetic basement 
(Lawal and Nwankwo, 2017) agrees relatively well 

with the SPI and SED result (Figure 5).These depth 
results correlate strongly with the depth assessment 
results in the  Bornu Basin by Ola et al. (2017), 
Nwankwo et al. (2012) and Genik (1993). However, 
estimated sediment thickness of over 10 km reported 
by Avbovbo et al. (1986) is not supported by the 
findings of this study. The CPD (2.92-6.55 km) (Table 
1) values were observed to be lower than previous 
results (Abraham et al., 2019). However, the GG 
(33.64-61.05 °C/km) and HF (84.11-152.63 mW/m-

2
) 

values (Table 1) are to some extent higher than 
results of preceding investigations (Abraham et al., 
2019; Onuoha and Ekine, 1999). The western and 
mid-eastern regions of the study location are 
dominated by relatively lower GG and HF values, 
while the portions with very high GG and HF values 
falls within the area of deeply buried intrusions 
delineated by upward continuation (Figure 4b). The 
low magnetisation zone that is sandwiched by Lake 
Chad and Kukara (Figure 4b) is dominated by low 
CPD, GG and HF (Figs. 6 and 7) Generally, HF 
values >80 mW/m-

2 
show anomalous geothermal 

anomaly in the sub-surface (Abraham et al., 2015; 
Sharma, 2004). The mapped semi-oval structures 
(Figure 7) which coincide with the location of shallow 
CPD (Figure 6), show high GG (>55 °C/km) and HF 
(>130 mW/m-

2
) region (red colour, Figure 7) 

described prospective geothermal regions (Bansal et 
al., 2011). Within the study location, the southern 
portions with high sediments thickness (Figure 5) and 
deeply buried intrusions (Figure 4a), is characterised 
by high GG and HF values (Figure 7). The 
exploratory wells sited within this region (Gubio, 
Furam, Bidda and environs) of anomalous sediment 
thickness and Lake Chad displayed evidence of gas 
accumulation (Moumouni et al., 2007) caused by 
enhanced GG from underlying intrusions (Petters 
and Ekweozor, 1982). The region with thick 
sedimentation (Figure 5) is adjoined by high GG and 
HF anomalies (Figure 7). The northern and 
northwestern portions of the study location are 
characterised by low to intermediate sedimentation, 
GG and HF. Such portions should be investigated 
further for hydrocarbon involving seismic reflection 
method and drilling of exploratory wells. The 
proliferation of igneous intrusions in the southern and 
central sections are understood to have originated 
the severe fracturing and faulting of the basement 
and overlying sedimentary series. Lineaments 
caused by tectonic events in rift environments like 
the Bornu Basin, function as probable passageway 
for hydrothermal fluid movement and mineralization 
(Mineral Resources of the Western US, 2017).  
 
CONCLUSION 
Based on the results and interpretations of the ASIG, 
we conclude that widespread geologic structures 
resulting from activities of intrusive rocks coexisting 
with the horst/graben structures are dominant in the 
middle and southern areas of Bornu Basin. The 
underlying volcanics (in the southern and central 
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parts) and synclinal structure (northwestern flank) 
that coincide with the location of N’del Edgi graben 
were revealed by the TMI upward continued to 5000 
m. Depth ranges of ~130.2 to ~5974.7 m, ~286.1 to 
~5885.3 m and ~2920 to ~6550 m were obtained 
from SED, SPI and Zt, respectively. The relatively 
correlated depth results revealed maximum 
sedimentary series that sits on extensive intrusions 
at the southern portion of the investigated area. The 
prospective geothermal regions characterised by 
high GG (>55 °C/km) and HF (>130 mW/m-

2
) 

anomalies coincide with the locations of shallow CPD 
dominated by igneous intrusions. 
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