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ABSTRACT

In this paper the author uses iterative multiple regression and backward elimination process to
determine the impulse response function coefficients of a given pair of input/output process. The computer-
based solution is done with the help of a Pascal program, which organises the selection of the input
variables with increasing time lag for the iterative solutions. The truncation point is determined by using the
error square contributions of the individual input variables. The method proves stable in both numerical and
statistical sense. There was no instability observed up to 80 input variables.
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INTRODUCTION

This paper applies iterative multiple regression to identify the impuise response function {hJx.n of
the system defined by the input process{X}:..+ and output process {Y }.r described by the equation (1) :

o

Yx = Z hkxka + Nn 1
ot (1)

where N, is uncorrelated with X; for all s<t.

Both the input and output data were extracted from the yearly annual reports of the Calabar port of
Nigerian Ports Authority covering the period from April, 1978 to December, 1997 (monthly data). The gross
throughput (total inward plus ouwtward traffic handled in a port in a month) in metric tones serves as the input
process, while the total revenue collected (in Naira) serves as the output, both after appropriate
transformation.

Box & Jenkins (1968, 1970) proposed a method for identifying a physical realisable linear system in
the time domain, in the presence of added noise. The impulse response function is obtained by writing the
least square equations for the impulse response function. According to Box and Jenkins, these equations,
which do not in general provide efficient estimates, are cumbersome to solve and also require the
knowledge of the truncation point K.

Newland (1975) proposed to revisit Yule-Walker equation and solved it directly since the increased
computing power of modern computers removed Box & Jenkins objections. In line with the idea of
recommendation, this paper gives least square estimates of the impulse response function. The problems
of selecting a finite model is solved by checking the iteratively calculated least square errors as an
alternative to the partial autocorrelation values. This therefore, eliminates Box & Jenkins objections about
the unknown parameter K, and working with least square estimates may give a stability to the calculations
due to their optimality. As a solution, a programme in Turbo Pascal 7, was developed to organise the data
input and iterated solutions of the least square problems involved.

This work therefore proposes the estimation of the impulse response function by iteratively applying
the least square approach. Here, ihe orthogonal projections of y, onto the space spanned by {X.s}oss< for
0zks< oo is taken after which the backward elimination procedure proposed by Draper & Smith (1968) is
applied to the result of the iterative muitiple regression procedure to eliminate insignificant lags.

METHODOLOGY

The Iterative Multiple Regression (IMR)

In a general study of contribution of individual variables, one must cover somehow the contribution
of all variables.
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The results about the correlation functions of stationary processes make it clear that the projection
to the past always can be expressed in terms of the first {*-1 elements of the past, where I* may be finite or
infinite. 1t is reasonable therefore, to organise the selection of variables into an iterative multipie regression
schemes by starting with the first lag, and gradually increasing it. As a measurement, the average residual
mean square, s°, can be used to measure the impact of the variables., When s does not change in two
subsequent solutions, that variable has no contribution to least square estimate of the variable on the right
side. This means that either it is linearly dependent with the previous set of variables, or simply, the
variable on the right side has no component in the direction represented by this vector. Hence,
automatically, a stopping point. Since a real data will not be fully stationary, the trend of s? plotted against
lag must be checked and where it turns horizontal gives the stopping point. The method however has to be
used in combination with the autocorrelation function, or alternative statistical indices like partial
autocorrelation function. The reason is that the process dynamism may operate with delayed parameters.
In this case, the first b parameters from the past will not appear on the right side at all. Autocorrelation
gives information, where the actual contributions of the past start. The partial autocorrelation also shows
the nature of this dependency.

These reasoning lead to the following scheme of selecting the variables:

S0 X,
g';(2) X X

s7(3) Xe Xia Xz

Sz(k) X Xia Xia .o Xix Xt Xk

where the first column represents the average residual mean square, s°, to the multiple regression solution
with the selected variables as indicated in the same line.

The error squares as calculated, with the differenced curve (which describes the contribution of
each selected variable in the explanation of the variance of the right side), were represented. The latter
advises on one hand where to stop, and on the other, suggests variables with negligible contribution for a
possible after selection backward elimination procedure.

RESULTS AND DISCUSSION
The input process is transformed by taking its logarithm to remove the seasonal components after

which a first order difference of the transformed input process results in a stationary process as shown in
Fig. 1, hereafter, referred to as input process.

First Differencing of Log(Threughput) {April 1978-December 1987]

©_log(throughput;

Time in Months

Fig. 1. Time plot of the differenced log input process.

Dividing the monthly_ revenue with the monthly consumer's price index (using the 1985 as base
year)‘deﬂates the 'output' series. The seasonal variation is removed from the deflated revenue by taking its
logarithm after which a first order differencing of the log (deflated revenue) helps to get rid of the trend. The
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First Differencing of tog(Deflated Ravenue) {April 1878-December 1987).
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Fig. 2. Time plot of transformed output process.
resulting stationary process is shown in Fig. 2. Hereafter, referred to as the output process.

impulse Response Functlon

o

The impulse response function coefﬂments (blue) with their error square contribution (red). obtained
by direct least square approach are shown in Fig 3. Making use of the backward elimination procedure, it
can be observed that only lags 0, 1 and 2 contribute to optimal least squares solution. The contributions
from other lags are insignificant and should therefore be ignored.

The transfer function is given here as

yi = 0.49423x; -0.031776x,1 +0.138762x., +n.

where y; and x; are the transformed input and output processes respectively while n, is the corresponding
noise process.

Coefficlents of impulse Response Function with thelr Error Square Contribution (Direct Method)
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Fig. 3. Coefficients of impulse response function (series 1) with their
error square contributions (series 2).

The Noise Process

- The autocorrelation function of the noise process and the partial autocorrelation
+ suggest an AR(6) process .

To select the best AR model, the iterative muiltiple regression proceduré was used and the plot of
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the error squares contribution _ shows that an AR( ) process desdribed by:

4

n = -0.665882n,.4- 0.282361 ntz +g4
where g, is the error in the noise process. ‘ s
DIAGNOSTIC CHECKING

The residual autocorrelation function obtained with this method shows a very low correlation pattern, which
suggests that the noise model is adequate, as confirmed by the Chi- square test of goodness-of-fit.

CONCLUSION

The least square equations were iteratively solved directly with increasing number of input variables
for the impulse response function coefficients with the help of a computer. The selection of input variables
was organised with the help of a Pascal program. Experience showed that using 233Mhz Pentium MMX
processor, the calculations were fast up to 80 variables, and the system did nat show any sign of unhealthy
symptoms of cumulative numerical errors or other kinds of instability.

The results confirmed the expectations of Newland (1975), and the strategy" to determine the
truncation point seemed to be successful. The use of error square contributions of individual variables
proved to be a good indicator to determine the truncation point.
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APPENDIX
iterative multiple regression:

This selects the first k variables for k=1,2,3, .. N, and solves the multiple regression problem with
the given right side variable. The module tabulates the solution, the variance of the residuals and the
variance of the residuals divided by the variance of the right side variable for each k. The Pascal code of
the module is as follows:

Procedure iterate(Var Fviim, Viim, Llim: integer; Var eps: real);
{Fvlim - the first independent variable to start
the analysis with
Viim - last independent variable to use (Fvlim<Viim)
Llim - the number of lines to be considered
Eps - precision for the variance of the residual, if
achieved, the program stops.}
Var
Ncc, NI, 1i: integer; {Ncc - actual number of variables used
NIl - the actual number of rows considered
I - loop counter} ‘
begin '
Nce:= Fvlim-1;
* Nil:= Lliim;
stanerr:=1.0;
clrscr;
assign(repfil, rawdat+'.REP');
rewrite(repfil); ,
while (Ncc<=Viim) and (stanerr>=eps) do begin {The loop stops when.Viim is
reached}
inc(ncce); {sets the humber of variables to consider}
for 11:=1 to Ncc do notes[l}]:= lI+1; {Fills the column numbers to be used
' h into the selection array}

notes[Ncc+1]:=1, ; {puts the right side into the selection array}
multiply(NLL, Ncc); {Calculates ATA with the selected right side
- : matrix A}
solve(Y, AO, Ncc), ~ {Solves the linear equation ATAx =A'y by Gauss
L elimination method} ;
standarderr(NLL, NCC); .. = {calculates statistical indices from residuals}
Iteriport(NIl, Ncc); - {prepares report to file and as required}.

end;

flush(repfil);

close(repfil);
end;

The modules of matrix multiplication, implementations of Gauss elimination method, and the
statistical and display modules can be made available on request.



