GLOBAL JOURNAL OF MATHEMATICAL SCIENCES VOL. 3, NO.J, 2004: 57 - 63
COPYRIGHT[C) BACHUDO SCIENCE CO. LTD. PRINTED IN NIGERIA. ISSN 1596- 620 57

CANONICAL BACKWARD DIFFERENTIATION SCHEMES FOR
SOLUTION OF NONLINEAR INITIAL VALUE PROBLEMS OF
FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

M. R. ODEKUNLE
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ABSTRACT

This paper describes a new nonlinear backward differentiation schemes for the numerical solution of
nonlinear initial value problems of first order ordinary differential equations. The schemes are based on
rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show
that they give better results than Euler backward method and trapezoidal method near a singular
point,
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INTRODUCTION
Let us censider the initial value problem (ivp)

y'=1f(x, y), y{Xo) =V, (1)

where y =[y'(x), y2(x),..., y*(x)]"and Y, is given, We assume that (1) satisfies the hypothesis of the

existence and uniqueness theorem (Lambert, 1973: 2} in the integration interval a £ x <b. Such ivps
may either be stiff, oscillatory, singular or neither stiff nor singular nor oscillatory. It is usually
desirable to have methods that possess stably efficient, accurate property to handle most if not all
these cases (Hall and Watt, 1976:1186). At the same time, cost must be considered. This is mostly
determined by the number of function evaluations required at any integration step provided the
scheme meets the desired minimum error tolerance.

Fatunla (1978) designed a variable order one-step scheme to cater for ivps whose solutions are
oscillatory. Fatunla (1978 and 1988) and Lambert (1973) recommended the use of L-stable
integrators for excessively stiff ivps. These and others are the motivator for the use of backward
differentiation formulas {bdfs) in automatic codes for stiff differential systems. The use of bdf in the
solutions of stiff ivps dated back to Curtis and Hirschfelder {1952). Since then, different automatic
codes using bdf for stiff and non-stiff differential system have evolved. These include DIFSUB of Gear
(1969,1971) and its descendants such as GEAR {(Hindmarsh, 1974), LSODE (Hindmarsh, 1980],
DEBDF and others (Fatunla, 1988:27, 213-214).

In general, the known bdf can be described as (Lambert, 1973:12)

Yoo :h&f(xnvk'vmk)'}'g (2)
where g is a constant for the current step obtained as a linear combination of past values of y. When

k=1, we have the implicit Euler or better known as Euler backward differentiation formula
ynﬂ :yu +hfml 4 B’ =1 . (3)

Problems involving singularities are very common in reality. Most of the available codes for such
problems made use of equation (3). The purpose of this paper is to provide us with an alternative
which we believe as shown in Table 2 should give a better result at a small extra cost due to the
need to compute square root sign but basically, no extra function evaluation is needed when our
proposed schemes is compared with equation (3) and trapezoidal methad.

CANONICAL POLYNOMIALS
Let the operator T be defined as (Taiwo and Onumanyi, 1991)

=4 41

dx
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and define
TQ,(x)=x’
Then,
T =jx "+ x!
Tx! =jTQ,(x)+ TQ,(x)
x'=jQ, () +Q,(x)

Therefore,

Q(x)=x"-jQ (x), j=0,1,2,.. ‘ (4a)
From (4a),
Quix)=1, Q,x)=x -1, Qix)=x>-2x+2,... (4b)

These polynomials written in rational form shall be used to derive our bdfs

DERIVATION OF THE METHOD

Let y(x) be the solution of (1) and assume that

where a, and b, are constants to be determined and Qi and Q; are as defined by (4a). Let us consider

the case when n=1 only so that we can write {(5) as

_ a. +a,lx-1)
+ g Fox=11
Replacing v in (1) by y we have,

Vi =10 y(x),  yIxg)=Ve,  xelxg, X, (7)

Collocate {7) at x = x» and X = Xn+1 to obtain
vy, )= flx,, yix, ) , (8a)

and

V(X000 = Fx Ly X)) (8b)
Using (6) in (8a) and (8b) we respectively obtain
a1+ byl —ash, =[1+bg +b,(x, - 1)13f (9a)

a1+ bg)—agh, =[1+by +b,(x,,, ~1)*f,, (9b)

net
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thating the right hand sides of {9a) and (9b) we have

|
' F RS ) (10)
IH 4b\(n~1)
so that
! L (11)
o= - :
! '\.n 4 | — e .1 -bE
lewrite the initial condition
yix,) -y,
as
O "1"n
we gbtain
a, =(1+b,ly, —(x. ~1)a,=hy,) (12a)
Using (12a) in (9a) we obtain
a, =b,y, +[1+by +b,0x, — 1, (12b)

Substitute the value of a,as in (12b} in equation (12a} to obtain

A = (1+Bgly, = (%, = 1)[1+Bg +by(x, ~ 1) 12l

n

In (6), substitute the values of a, and a, as in {12b) and (12c) respectively we have,

L [1+b +b1(xn— )
Y=Y ot x ~ww—~~v—:~ﬂ~
nn 1+ bO b](x 1)

Substitute {11) in this equation we have

Vv X ) e h (12
Y=Yyp +iX Xn)n x ~x)Hx—x IF thed
n+-1

In {13) let x = xn.1 so that,

. 1 -
Yol Yt hfn = T

1
(al IfF = 1 we have,

Vyvm ::\/,] +hf,
the popular Euler formula, Euler (1913).
(b) If F#1 and F#0 then,
~ - f
Yn+1=Yn ™t h'g“

and on using (10) in this we have

1
Ynat1=yn-hitf 2 ifF <o (154



60 M. R. ODEKUNLE

or

1
V1= Yn +hitf )2 ifF >0 | (15b)

These are our desired schemes.

PROPERTIES OF THE SCHEMES

We noticed that (15) represents non-linear implicit schemes. The determination of .)7 , at x, , with

i+

an assumed value y, ’\ requires predictor-corrector approach.

Theorem (Jain, 1987)

Let v'"! be a sequence of approximations to Y., M forall values of y close to y,,, and including the
(v )| el lor.
RY <
values y = ', pi L we have |t < 1 where L= sup /— S " G, satisfies
& |] (x.1)eb SO 2
1| <1, then the sequence {yﬁi,’} converges to y,,,, p=0.

This implies that for a converging sequence o; approximations, F must be a decreasing function.
We next consider the concept of stability of the schemes with a view to access their suitability. Let
us apply the schemes to Dahlquist {1963) stability scalar test.
Consider the ivp
= Ay, y{xo) = yo (16)
From {15b} and (16),
Yre1=Yn +h2Ayavn )

ar

j
|

Ynel g, Yol ]2
Yn Lo Yn

Let

L ¥ni
Yn
to obtain
Z—(h*N +2)p+1=0
or
-PBpt+ 1 =0 17
where
B=Nh®+2>0, AeR

The same applies if we use {15a) and (16). The roots of the characteristics equation {17) are
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2 o] "
:[il\__s@_‘,:i and pz :Et}‘_ﬁi

2

If Mh— o0, [} .» oo and the first root tends to zera while the second root becomes dominant. The
relative error becomes unbounded oscillation and the computation degenerates into nonsense beyond
a certain point, This shows that the schemes are A- stable only when A is positive (compared with
Scheid (1989). ’

"

iILLUSTRATION L
Investigation shall now be made abo(it*the performances of equations (15a) and (15b) using some
problems. In both problems stated below, classical Runge - Kutta scheme of order 4 shall be used as
the predictor. This is to reduce or eliminate errors due to the predictor as compared with that by the
corrector so that the performance of each carrector can be easily seen. In each of the problems
considered, the results shall be compared with that when linear backward Euler (equation (3)) is used
being the corrector used by most of the existing codes. All iterations at each step shall be carried out
once. That is, PEC mode {Lambert, 1973: 87] using the. classical Runge-Kutta scheme as the
predictor shall be used throughout the iterations to give each scheme a fair trial and for easy
comparison. No improvement strategy is introduced also. We have notwithstanding used double
precision so that the error could be that of discretization only. 3
The choice of {15a) or {15b) in solving any problem from our computational experience illustrated
using problems 1 and 2, depend on Lipschitz condition of the problem and F. -

1. If as F decreases L also decrease, we use {15a) otherwise,

2. If as F decreases L increases, we use (15b}. \"\

Let us rewrite our schemes in simpler forms by replacing Qn by y,and vy, by y(‘” in Equations

(15a) and (15b) to respectively aobtain

1

i L
— . 2 f 189
Vn + 1 yn h(fnfn +1) FF <0 el

or
1 .

. 2 ~ 18b
yn +1 yn } h(fnfn +1) =0 ' ( )

These are the schemes that are now applied in solving the following examples.

Problem 1: y' = -10ly-1)*, yl0) = 2, 0 <x <1

Theoretical Solution: y =1+ l’l(()—: [ = \? 200y - ])[ ‘

Here, for a decreasing F, L decays so we shall use equation (18a). The results are shown in Table 1.
Problem 2: y = 1+ y% y0) = 1,0<x <1

Theoretical Solution: y = tan{x + DL :sll‘i

Type: Solution is oscillatory and has singularity at x = T
For problems like this, as F decreases, the Lipschitz condition increases and even exponentially near
the singularity point (Fatunla, 1988: 26} so we shall use (18b). The results are shown in Table 2.

DISCUSSION OF RESULTS

In table T, our results using (18a) to solve problem 1 is shown. Our results were compared with those
obbtained for the same problem using implicit Euler scheme equation [3). The absolute errors obtained
using our scheme are in general smaller than those obtained using equation (3) aithough with an extra
work of calculating square root but using the same number of function cvaluations at cach step.
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TABLE 1: The absolute errors for different values of h for
y' = -10{y — 1), yi0) = 2,0<x <1
T h=01 " h=001, 1 h=00025 N
XYoo=yt oo | Ve =Y nafan) " | Yorr=yorifoe | Yaet=yon(fofnes 05 | Yort=yathter | Yaer=yanafost 0 |
0.1 | 2.500000E-01 | 3.725290E-08 | 1.885005E-02 | 7.1559106-06 | 4431773E-03 | 1.143664E-06
02 [ 381510401 | 4.166667E-02 | 1.381415E-02 | 1604560504 | 3.148109E-03 1.135468E-05
0.3 | 4.232922E-01 | 3.710938E-02 | 9.847272E-03 | 1.506694E-04 | 2.235886E-03 | 9.771436E-06
0.4 | 4249055E-01 | 2.834456E-02 | 7.301094E-03 | 1.173Q43E-04 | 1.660397E-03 | 7.321834E-06
06 | 4032961E-01 | 2.144285E-02 | 5.624316E-03 | G.100742E-05 | 1.2835456.03 | 5.456481E.05
0.6 | 3.670290E-01 | 1.652354E-02 | 4.470701E-03 | 7.187833E-05 | 1.022894E-03 | 4.369385E.06
{'(37 ' 3.224350E-01 | 1.302708E-02 | 3.644647E-03 | 5.787797E-06 | 8.359291E-04 | 3.450597E-06
08 | 275197801 | 1.040406E-02 | 3.032799E-05 | 4744088E05 | 6.972287E-04 | 2.953741E-06
09 | 2.301046£-01 | 8.615647E-03 | 2.566663E-03 | 3.954530E-05 | 5.915856E-04 |  2.214909E-06
_" mﬁJ 1.819326E-01 | 6.977004E-03 | 2.202847E-03 | 3.347614E-05 | 5.087488E-04 | 1.632478E-06

P VU

eI
" 4.444040E-04 *4\
4377810E-04

1 1.907844E.03 ’
T 37054204E-03
© B.849081E-03 |
I 1102734802 |

'V

e

o

TABLE 2:The absolute errors when h = 0.01 for v = T+y% yl0) =1,
0 < x £ 0.80 (singularity point is ‘at x =7.857143E-01)

X

~ 1.000000E-C2 |

5.000000F-02

1.500000E-01

2.000000E-01

Ynﬂ = Yn + 1/2h<fn :_f:;1) I

6.463446E-04

Yari T Yat h(fnfn‘ﬁvb

7.071051E-04

~ 2.500000E-01
~ 3.000000E-01

~ 3.500000E-01 |

T B.223141E-04

©1.075834E-03

6.474174E-04
7131848€-04

8.157311E-04
0.486360E-04
©1.124590E-03

" 1.282931E-03

1.363397E-03

T 2.627087E-02

1.566365E-03

4.000000E-01

2.515787E-03

4 500000E-01
" 5.000000E-01

6.000000E-01

1.697376E-03

2A721780E-(k)3

-

7 500000E-01
"~ 7.600000E-01
~7.700000E-01 |

6.500000E-01

~7.000000E-01

4. 113123E-02 3252536E.03 | 3.599197E-03
6.594021E-02 4393991E-03 © 4.996474E-03
1.089636E-01 T 8.004187E-03 9.156819E-03
1.875876E-01 1.588071E-02 T 1790107E-02
3.717247E-01 2.914370E-02 3367174E-02 |
8 765479E-01 ! 9.091651E-02 1.020654E-01
2.852176E-00 | 3.520778E-01 I 3.931476E-01

 1.207867E+01 |

2.034901E+02

T1.781252E+04

7.800000E-01

7.850000E-01
7.900000E-01

2.004583E+06

T 5169254E-00 .
C1A25226E401
8.199627E+03

h

4372553600
©9209500£-00
 2.480072E+07

4.851691E+10

4.127058E+05

1.340456E+02

3.581233E+08

1.367465E+02

1.005519E+06

9.598928E+01

8.000000E-01

8.178258E+08 {

1

9.232341E+05

2.671256E-00

Clearly, taking smaller step length greatly improves the results obtained.
As in tablel, we have shown the performance of the new scheme {18b) when compared with implicit
Euler scheme in table 2 for problem 2. Since trapezoidal scheme has the smallest error constant
among linear multi-step methods of order 2 (Fatunla, 1988: 42-46), we have further decided to
compare the performance of our scheme with it also since both require the same number of function
evaluations per step and for the purpose of wider comparison,
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The results by both the trapezoidal method and our scheme are better than that by the backward
Euler. The results by the trapezoidal scheme are slightly better than the ones by our scheme. As we
approach the singularity point, our scheme behaves clearly well than both schemes. The ability of our
scheme to quickly recover after the singularity point is clearly seen in the table.

CONCLUSION

A convergent and A-stable canonical backward differentiation formula has been derived for the
solution of initial value problems of first ordinary differential equations with singular solution. The
results obtained were quite encouraging when compared in particular with that by the conventional
linear Euler backward differentiation formula although with an extra cost of computing square root.
The ability of the scheme to continue fairly well after the singularity point is another advantage of the
scheme over the linear Euler backward scheme.
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