CONVOLUTION PROPERTIES ASSOCIATED WITH CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

A. T. OLADIFO

(Received 28 October, 2005; Revision Accepted 19 May, 2006)

ABSTRACT

Murugusundaramoorthy and Magesh (2004) introduced the subclasses $TS(\alpha, \beta)$ and $TS_p(\alpha, \beta)$ of uniform convex functions and starlike functions with negative coefficients where they obtained some results. Our aim here is to investigate the convolution properties associated with the subclasses $TS(\alpha, \beta)$ and $TS_p(\alpha, \beta)$ respectively by applying certain techniques based especially upon the Cauchy-Schwarz and Holder inequalities. Some consequences are also discussed.

KEY WORDS: Analytic, Convolution, Convex, Starlike, Univalent.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARY RESULTS.

Denoted by S the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic and univalent in the unit disk $E = \{z: |z| < 1\}$. Also, ST and CV are the subclasses of S_p that are respectively starlike and convex.

A function is uniformly convex (uniformly starlike) in E if $f(z)$ is in CV(ST) and has the property that for every circular arc γ contained in E, with centre e also in E, the arc $f(\gamma)$ is convex (starlike) with respect to $f(e)$. The class of uniformly convex functions is denoted by UCV and the class of uniformly starlike functions by UST.

It is well known that

$$f \in UCV \iff \frac{|zf'(z)|}{|f'(z)|} \leq \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\}$$

see Ma and Minda (1992). Rongning (1993) introduced a new subclass of starlike functions related to UCV defined as

$$f \in S_p \iff \frac{|zf'(z)|}{|f(z)|} \leq \Re \left\{ \frac{zf'(z)}{f(z)} \right\}.$$

We note here that $f(z) \in UCV \Leftrightarrow zf'(z) \in S_p$.

Later, Rongning (1993) generalized the class S_p by introducing a parameter α, $-1 \leq \alpha < 1$,

$$f \in S_p(\alpha) \iff \frac{|zf'(z)|}{f(z)} \leq \Re \left\{ \frac{zf'(z)}{f(z)} - \alpha \right\}.$$

Also Murugusundaramoorthy and Magesh (2004) introduced subclasses $TS(\alpha, \beta)$ and $TS_p(\alpha, \beta)$.

Here we let $TS(\alpha, \beta) = S(\alpha, \beta) \cap T$ where T, the subclass of S consisting of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \geq 0, \quad \forall n \geq 2.$$

This class of functions was introduced and studied by Silverman(1995). Silverman and Silvia (1997). And also let $TS_p(\alpha, \beta)$ denote the class of function, $f(z)$ in $TS(\alpha, \beta)$ and be of the form
\[f(z) = z - \frac{b(1-\alpha)(c)}{(2 + \beta - \alpha)(\alpha)} z^2 - \sum_{n=3}^{\infty} a_n z^n \quad (a_n \geq 0, \; 0 \leq b \leq 1). \] \tag{1.3}

The main aim of this paper is to investigate the convolution properties associated with the subclasses \(TS^*(\alpha, \beta) \) and \(TS^*_n(\alpha, \beta) \).

A necessary and sufficient condition for a function \(f(z) \) of the form (1.2) to be in the class \(TS^*(\alpha, \beta) \), \(-1 \leq \alpha < 1, \beta \geq 1 \) is that

\[\sum_{n=2}^{\infty} \frac{\gamma(n+1+\gamma)}{\gamma(n+1)} a_n \leq 1 - \alpha. \]

Also, \(TS^*_n(\alpha, \beta) \) denote the class of functions \(f(z) \) in \(TS^*(\alpha, \beta) \) and of the form

\[f(z) = z - \frac{b(1-\alpha)(c)}{(2 + \beta - \alpha)(\alpha)} z^2 - \sum_{n=3}^{\infty} a_n z^n \quad (a_n \geq 0, \; 0 \leq b \leq 1) \]

if and only if

\[\sum_{n=2}^{\infty} \frac{\gamma(n+1+\gamma)}{\gamma(n+1)} a_n \leq (1-b)(1-\alpha) \quad (-1 \leq \alpha < 1, \; \beta \geq 0) \]

To do this we need the following preliminary results which we shall state without proof.

Theorem A: Murugusundaramoorthy and Magesh (2004). A necessary and sufficient condition for \(f(z) \) of the form (1.2) to be in the class \(TS(\alpha, \beta) \), \(-1 \leq \alpha < 1, \; \beta \geq 0 \) is that

\[\sum_{n=2}^{\infty} \frac{\gamma(n+1+\gamma)}{\gamma(n+1)} a_n \leq 1 - \alpha \] \tag{1.4}

Theorem B: Murugusundaramoorthy and Magesh (2004). Let function \(f(z) \) be defined by (1.3) then \(f(z) \in TS_n(\alpha, \beta) \) if and only if

\[\sum_{n=3}^{\infty} \frac{\gamma(n+1+\gamma)}{\gamma(n+1)} a_n \leq (1-b)(1-\alpha) \] \tag{1.5}

Finally, for functions \(f_j(z) \in S \) \((j = 1, \ldots, m)\) given by

\[f_j(z) = z - \sum_{n=1}^{m} a_{n,j} z^n \quad (j = 1, \ldots, m) \] \tag{1.6}

the Hadamard product (or convolution) is defined by

\[(f_1 \ast \ldots \ast f_m)(z) = z - \sum_{n=2}^{\infty} \left(\prod_{j=1}^{m} a_{n,j} \right) z^n \] \tag{1.7}

2. **CONVOLUTION PROPERTIES**

Theorem 2.1: If \(f_j(z) \in TS^*(\alpha, \beta) \) \((j = 1, \ldots, m)\), then

\[(f_1 \ast \ldots \ast f_m)(z) \in TS^*(\rho, \beta) \]

where

\[\rho = 1 - \frac{(n-1)c_{n-1} \prod_{j=1}^{m} (1-\alpha)}{(a_{n-1} \prod_{j=1}^{m} \frac{\gamma(n+1+\gamma)}{\gamma(n+1)} \alpha_j)} \quad (n-1)c_{n-1} \prod_{j=1}^{m} \frac{\gamma(n+1+\gamma)}{\gamma(n+1)} \alpha_j \]

\[(1-\alpha) \]

2.1
The result is sharp for the functions \(f_j(z) \) given by

\[
f_j(z) = z - \left(\frac{1 - \alpha_j}{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})} \right) z^n
\]

2.2

Proof. Following the work of Owa [1.2 (1992)], Owa and Srivastava (2003), we use the principle of mathematical induction in our proof of Theorem 2.1.

Let \(f_1(z) \in TS^*(\alpha_1, \beta) \) and \(f_2(z) \in TS^*(\alpha_2, \beta) \). Then the inequality

\[
\sum_{n=2}^{\infty} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,j} \leq 1 - \alpha_j \quad (j = 1, 2)
\]

that is, for \(m = 1 \), we see that \(\rho = \alpha_1 \). For \(m = 2 \) Theorem A gives

\[
\sum_{n=2}^{\infty} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,j} \leq 1 \quad (j = 1, 2)
\]

2.3

Thus by applying the Cauchy-Schwarz inequality we have

\[
\left| \sum_{n=2}^{\infty} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,j} \right|^2 \leq \left(\sum_{n=2}^{\infty} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,j} \right) \left(\sum_{n=2}^{\infty} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,j} \right)
\]

Therefore, if

\[
\sum_{n=2}^{\infty} \frac{n - \delta}{1 - \delta} (a_{m,1})(a_{m,2}) \leq \sum_{n=2}^{\infty} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,j} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,j} \frac{a_{n,1}a_{n,2}}{(c)_{n-1}^2}
\]

that is, if

\[
\sqrt{(a_{m,1})(a_{m,2})} \leq \frac{1 - \delta}{n - \delta} \sqrt{\frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} \frac{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}{1 - \alpha_j} a_{n,1}a_{n,2}}
\]

Then, \((f_1 \ast f_2)(z) \in TS^*(\delta, \beta) \)

We also note that the inequality (2.3) yields

\[
\sqrt{a_{n,j}} \leq \sqrt{\frac{1 - \alpha_j}{n(1 + \beta) - (\alpha_j + \beta)(a_{n-1})}} \quad (n = 2, 3, ..., j = 1, 2)
\]

Consequently, if
\[
\sqrt{\frac{(1-\alpha)(1-\alpha_i)}{n(1+\beta)-(\alpha_i+\beta)(1-\alpha_i)(1-\alpha_i)}} \leq \frac{1-\delta}{n-\delta} \sqrt{\frac{n(1+\beta)-(\alpha_i+\beta)(1-\alpha_i)(1-\alpha_i)}{(1-\alpha)(1-\alpha_i)}} \tag{c}_{n-1}
\]
That is, if
\[
\frac{n-\delta}{1-\delta} \leq \frac{n(1+\beta)-(\alpha_i+\beta)(1-\alpha_i)(1-\alpha_i)}{(1-\alpha)(1-\alpha_i)} \tag{c}_{n-1}
\]
then, we have \((f_i \ast f_j)(z) \in TS^*(\delta, \beta)\). It follows from (2.4) that
\[
\delta \leq 1 - \frac{n-1}{n(1+\beta)-(\alpha_i+\beta)(1-\alpha_i)(1-\alpha_i)} \tag{c}_{n-1}
\]
which shows that \((f_i \ast f_j)(z) \in TS^*(\delta, \beta)\), where
\[
\delta = 1 - \frac{n-1}{n(1+\beta)-(\alpha_i+\beta)(1-\alpha_i)(1-\alpha_i)} \tag{c}_{n-1}
\]
Therefore, the result is true for \(m = 2\).
Next we suppose that the result is true for any positive integer \(m\). Then we have
\[
(f_i \ast f_j \ast \ldots \ast f_m)(z) \in TS^*(\tau, \beta)
\]
where
\[
\tau = 1 - \frac{n-1}{(n+1)(1-\alpha_i)} \prod_{j=1}^{n-1} (1-\alpha_j)
\]
and \(\rho\) is given by (2.1). After a simple calculation we obtain
\[
\rho = 1 - \frac{n-1}{(n+1)(1-\alpha_i)} \prod_{j=1}^{n+1} (1-\alpha_j)
\]
This shows that the result is true for \(m+1\). Therefore, by mathematical induction the result is true for any positive integer \(m\).
Further, taking the function \(f_i(z)\) defined by (2.2) we have
\[
(f_i \ast \ldots \ast f_m)(z) = z - \left(\frac{1-\alpha_i}{n(1+\beta)-(\alpha_i+\beta)} \frac{(c)_{n-1}}{(a)_{n-1}}\right) z^n = z - A_n z^n
\]
where
\[
A_n = \prod_{j=1}^{n} \frac{1-\alpha_i}{n(1+\beta)-(\alpha_i+\beta)} \frac{(c)_{n-1}}{(a)_{n-1}}
\]
It follows that
\[\sum_{n=1}^{\infty} \left(\frac{n(1+\beta) - (\rho + \beta)(c)_{n-1}}{1 - \rho} \right) A_n = 1 \]

This evidently complete the proof of Theorem 2.1.
Letting \(\alpha_j = \alpha (j = 1, \ldots, m) \) in Theorem 2.1, we have

Corollary A: If \(f_j(z) \in TS' (\alpha, \beta) \) \((j = 1, \ldots, m) \), then

\[(f_1 \ast f_2 \ast \ldots \ast f_m)(z) \in TS' (\rho, \beta) \]

where

\[\rho = 1 - \frac{(n-1)(c)_{n-1}(1-\alpha)^n}{(\alpha)_{n-1}(n(1+\beta) - (\alpha + \beta))^{n-1} - (1-\alpha)^n(c)_{n-1}} \]

The result is sharp for the functions \(f_j(z) \) \((j = 1, 2, \ldots, m) \) given by

\[f_j(z) = z - \frac{1-\alpha}{n(1+\beta) - (\alpha + \beta)(\alpha)_{n-1}} z^n \]

(j = 1, 2, \ldots, m)

Setting \(\alpha = -1 \) and \(\beta = 0 \) in Corollary A to obtain

Corollary B: If \(f_j(z) \in TS' (1, 0) \) \((j = 1, 2, \ldots, m) \), then

\[(f_1 \ast f_2 \ast \ldots \ast f_m)(z) \in TS' (\rho, 0) \]

where

\[\rho = 1 - \frac{2^n(n-1)(c)_{n-1}}{(n+1)^n(\alpha)_{n-1} - 2^n(c)_{n-1}} \]

The result is sharp for the functions \(f_j(z) \) \((j = 1, 2, \ldots, m) \) given by

\[f_j(z) = z - \left(\frac{2}{n+1} \frac{(c)_{n-1}}{(\alpha)_{n-1}} \right) z^n \]

(j = 1, 2, \ldots, m)

Setting \(\beta = 0 \) in Theorem 2.1, we have

Corollary C: If \(f_j(z) \in TS' (\alpha, 0) \) \((j = 1, 2, \ldots, m) \), then

\[(f_1 \ast f_2 \ast \ldots \ast f_m)(z) \in TS' (\rho, 0) \]

where

\[\rho = 1 - \frac{(n-1)(c)_{n-1} \prod_{r=1}^{m} (1 - \alpha_r)}{(\alpha)_{n-1} \prod_{r=1}^{m} (n - \alpha_r) - (c)_{n-1} \prod_{r=1}^{m} (1 - \alpha_r)} \]

The result is sharp for the functions
\[f_j(z) = z - \left(\frac{1 - \alpha_j}{n - \alpha_j} \right) (c)_{n-1} \left(\frac{c}{a} \right)^{z^*} \]
\[(j = 1, 2, \ldots, m) \]

By fixing the second Coefficient, and putting \(\beta = 0 \) we have the following

Corollary D: If \(f_j(z) \in TS^*(\alpha_j, \beta) \)
\[(f_1 \ast f_2 \ast \ldots \ast f_n)(z) \in TS^*(\rho, \beta) \]

where

\[\rho = 1 - \frac{c \prod_{j=1}^{m} (1 - \alpha_j)}{a \prod_{j=1}^{m} (2 - \alpha_j) - c \prod_{j=1}^{m} (1 - \alpha_j)} \]

The result is sharp for the functions \(f_j(z) \)
\[(j = 1, 2, \ldots, m) \]

After fixing second coefficient as in Theorem B, we have the next Theorem

Theorem 2.2: If \(f_j(z) \in TS^*_n(\alpha_j, \beta) \)
\[(j = 1, 2, \ldots, m) \text{, then} \]

\[(f_1 \ast \ldots \ast f_n)(z) \in TS^*_n(\rho, \beta) \]

where

\[\rho = 1 - \frac{(n - 1)(1 - b)(c)_{n-1} \prod_{j=1}^{m} (1 - \alpha_j)}{(a)_{n-1} \prod_{j=1}^{m} \left[n(1 + \beta) - (\alpha_j + \beta) \right] - (1 - b)(c)_{n-1} \prod_{j=1}^{m} (1 - \alpha_j)} \] \[2.5 \]

The result is sharp for the functions \(f_j(z) \)
\[(j = 1, 2, \ldots, m) \text{, given by} \]

\[f_j(z) = z - \left(\frac{(1 - b)(1 - \alpha_j)(c)_{n-1} (c)_{n-1}}{n(1 + \beta) - (\alpha_j + \beta)(a)_{n-1}} \right) z^* \]
\[(j = 1, 2, \ldots, m) \] \[2.6 \]

Proof: Following the same method as in Theorem 2.1 with some simple calculation the result follows.

Letting \(\alpha_j = \alpha (j = 1, 2, \ldots, m) \) in Theorem 2.2; we have

Corollary E: If \(f_j(z) \in TS^*_n(\alpha, \beta) \)
\[(j = 1, 2, \ldots, m) \text{, then} \]

\[(f_1 \ast \ldots \ast f_n)(z) \in TS^*_n(\rho, \beta) \]

where
CONVOLUTION PROPERTIES ASSOCIATED WITH CERTAIN SUBCLASSES OF ANALYTIC

\[\rho = 1 - \frac{(n-1)(1-h)(c_{n-1})(1-\alpha)^n}{(a_{n-1})[n(1+\beta)-(\alpha+\beta)]^{n}-(1-h)(1-\alpha)^n(c_{n-1})} \]

The result is sharp for the functions \(f_j(z) \) \((j = 1,2,\ldots,m) \) given by

\[f_j(z) = z - \frac{(1-h)(1-\alpha)(c_{n-1})}{n(1+\beta)-(\alpha+\beta)(a_{n-1})} z^n \quad (j = 1,2,\ldots,m) \]

REFERENCES

