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ABSTRACT 
 

We investigate some properties connected with the alternating Sylvester series and alternating Engel Series 
representation for real numbers, in terms of the integer digits involved. In particular, we look at an algorithm that leads 
to a general alternating series expansion for real numbers in terms of rationals and deduce the alternating Sylvester 
and alternating Engel series from this general series.  
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INTRODUCTION  

The series of Engel and Sylvester (Galambos 1976)for representing real numbers have been studied in some 
detail. Much less known is the fact that there are alternating series representations of real numbers in terms of 
rationals corresponding to the above. In 1989 Knopfmacher and Knopfmacher introduced an algorithm according to 
which any real number may be expressed by a general alternating series of rationals. This algorithm is described 
below.       

Given any real number  ,A  let [ ],0 Aa =  (where [ ]A  is the interger part).   
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From the algorithm, the following was proved by Knopfmachor and Knopfmacher (1989). 
Theorem 1: Every real number A has a unique representation in the form either (i) or (ii) below: 
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From theorem 1, they obtained the following particular cases (iii) and (iv)   
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 with ( )1
1

+≥+ iii aaa  when 1== nn cb  for all n  and  
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(iii) above is known in literature as the alternating Sylvester series while (iv) is known as the alternating Engel 
expansion (Kalpazidou and Ganatsiou (1991)). We are interested in studying the properties of these alternating series. 
Theorem 2: The alternating Sylvester and alternating Engel series terminate after a finite number of terms if and only 
if A is rational.    
Proof:  
 Clearly any number represented by a finite expansion is rational. Conversely, since 
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In the alternating Sylvester Case  we now obtain  
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Thus iiiii papqp <−≤≤ +10 . Since { }ip  is a strictly decreasing sequence of non-negative integers, we must 

eventually reach a stage at which 0
1
=+np , where  
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Similarly the result for the alternating Engel series follows from  
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However Jeffrey Shallit (1991), shows that not all rational numbers have representations that terminate, he gave the 

example of the rational 
12

2

+r
 ( r  an integer 2≥ ), that is neither finite nor ultimately periodic. 

Theorem 3:  The alternating Sylvester series and the alternating Engel series representations of real numbers are 
unique.  
Proof:  
 Recall that the Engel alternating series for a rational A is  
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Here 
0
a  is an integer and ia  is a positive integer for 1≥i . If ii aa ≥+1 , for all i  then expansion is essentially 

unique. Similar proof for Sylvester’s series. 
Note that for rational numbers with a finite expansion there is a possible ambiguity in the final term. This 

ambiguity is eliminated by the conventions below, introduced by Kalpazidou and Ganatsiou (1991). 

Convention 1: Replace the finite sequence ( )( )1,,,
110
+−naaa L  by the sequence ( )( )1,,,,
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the case 1=na .            

Convention 2: Replace the finite sequence ( )naaa ,,,
10
L  by the sequence ( )1,,,,
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1−= nn aa .  

 
Order Property in Alternating Sylvester and Engel Expansions.  

In order to be able to compare finite expansions of different lengths in size we introduce the symbol Ω  with 

the property Ω<n , for any Nn∈ . We can represent finite sequences by infinite sequences as follows: for every  
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The same apply in the case  
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Theorem 4: (Order property). Let  ( )( ) ( )( )LLL ,,,,,,
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Now suppose (i) holds. If firstly 
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Next suppose ,0,22 >< nba nn  in the alternating Sylvester Case, since 
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Since ,1for 1 >> iai  and by observing convention 1.  Furthermore  
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In the alternating Engel Case, since  
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as in the Sylvester Case Also 
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Note if Ω=nb2   then 0
1

2
=nB  and the result remains valid. 

 The result is proved in a similar way if (ii) holds.    
   
CONCLUSION 

 We have considered the alternating Sylvester and alternating Engel series expansions for rational numbers. 
Like the positive series, the corresponding alternating series terminates and is unique for every rational number 

0, ≠= b
b

a
A . Also using a simple method we have shown that both the alternating Sylvester series and the 

alternating Engel series are well ordered.  
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