GLOBAL JOURNAL OF MATHEMATICAL SCIENCES, VOL 2, NO. 1, 2003; 29-36
COPYRIGHT ©® BACHUDO SCIENCE GO 1 TD. PRINTED IN NIGERIA. 1SSN 1596-6208 29

DEVELOPING SPPVM MODULES WITH VISUAL BASIC

MOSES E. EKPENYONG, NNAMSO M. UMOH and ETIM E. EKONG
(Rcocived 16 August 2001. Revision accepted 5 September 20002).

ABSTRACT

The development of true Parallel Machines of which literatures are scanty is still algorithmitic.
Since the need.for increasing power in computations is the wish of every programmer or designer,
PVMs become more of a choice. PYMs enable large computational problems to be solved more cost
effectively by using aggregated power and memory of many computers. This paper develops a
SPPVM (Single Processor Parallet Virtual Machine) with Visual Basic. [t employs the VB Shell
command to cause a single program or instruction to execute in two different shells in same memory
space. A quick sort program is implemented on two shells. Each shell sorts 500 elements. The
machine used for the execution is: Intel {r} Celeron ™ Processor — Genuine Intel ~ 600 Mhz, with
Total Physical Mem. = 30.45MB, Available Physical Mem. = 232KB, Total Virtual Mem. = 2GB,
Available Virtual Mem. = 1.90GB, Page File space = 1.97GB at runtime. Result comparison with a
strictly sequential version reveals that the SPPVM executes in less time than %2 x Tseaq (the theoretical
value for two processes in parallel). The key benefit of this paper is to enable programmers explore
parallel programming features on micro systems and develop their own SPPVM.

Keywords: Shell function, Seif-diagnostic, Multi processing, Multi-Platform, Parallel Processing.
INTRODUCTION

PVM (Parallel Virtual Machine) is a software package that permits a heterogeneous collection
of .Unix and/ or NT Computers hooked together by a network to be used as a single large parallel
computer. The software is very portaple. The source, which is available through NETLIB, has been
compiled on everything from Laptops 16 CRAYS.

Current research on PVM reveals that PVM 3.4.3 Release includes self-diagnostic install and
input from RedHat Linux and NASA for improved use on Beowulf clusters. New features in PVM 3.4x
include communication contexts, message handlers, persistent messages, and interoperability
between NT and Unix clusters, (See Kung, 2001).

SPPVM DESIGN

, SPPVM design is similar to multiprocessors. Multiprocessing allows more than one program to
be in states of execution at any given time. Each program executes until it is blocked, at which time
control of the CPU is passed to the next process (Davis, 1996).

In Microsoft Windows ‘9x, etc. each process has its own memory space to prevent one

MOSES E. EKPENYONG, Department of Mathematics, Statistics and Computer Science, University of Uyo, Uyo, Niger
,NNAMSO M. UMOH, Department of Mathematics, Statistics and Computer Science, University of Uyo, Uyo, Nigeria
ETIME EKONG, Department of Mathematics, Statistics and Computer Science, University of Uyo, Uyo, Nigeria

30 MOSES E. EKPENYONG, NNAMSO M. UMOH and ETIM E. EKONG

process from interfering with the others. SPPVM is similar except that the different processes
execute in the same memory.space.

The various versions of Windows can Multitask, or run several applications at once. (How
etfective this will be depends upon how the applications were written. Modern Windows Applications
can be muititasked by the OS alone; applications designed for Windows 98 must cooperate by
relinquishing control for muititasking to work.) Visual Basic offers this advantage of Windows

Muititasking capabilities by accepting code that activates any Windows Applications or that sends
commands directly to the active application from a Visual Basic Project.

Graphics and Text can be exchanged between Windows Applications in Visual Basic using the
Clipboard. The Clipboard can be used together with the properties given in Cornell, 1998 to
implement similar features in projects. The Clipboard can only hold a piece of related data at a time.
A sample program applying the Clipboard command is shown in Cornell, 1998; pp 750 ~ 752.

Chapell, 1996 overviews COM/OLE. Visual Basic applies the Active X/COM/OLE properties and
allows programmers build integrated Windows Applications using Visual Basic as a “glue” to bind
disparate objects and applications together, (The objects can be accessed not only on a single

machine but also on the Internet).
VB Shell function runs any .com, .exe, .bat or .pif files from a Visual Basic Program. For
example, a PASCAL Program can be-called under Windows 98 with a line of this nature:

Shell “C:\PASCAL\PASCAL.EXE MYPROG.PAS”.

The OS must know where MYPROG.PAS is located. This is possible if the file being "Shelled”
to is located in a directory in the path or in the current directory. When a program is shelled, a new
iconized Window is generated and given a focus. From this principle; heavy computational jobs can be
split into stratified programs or modules, shelied and allowed to execute virtually in paraliel. With this,
Windows, Visual Basic, Currently running program, and a “shelled” program can simultaneously run in
memory, otherwise, we may have to rely on Windows to manage the memory by swapping to disk,
but execution will slow down dramatically. However, it is far more cost effective to expand the
memory than to build a parailel machine. -

SPPVM MODULES

The concept of parallelism centres on several common parallel programming models, which
include: pipelining, data partitioning, recursive computations, domain decomposition, divide-and-
conquer and multi-functional pipelining. Brief descriptions of these can be found in Kung,2001. A
complete example program written in W2 is presented below:
module Stepdata (a in, b out)
float a[1000], b[1000]
cellprogram (cellid:0:9)
begin

function step
begin

intj;

float temp;

DEVELOPING SPPVM MODULES WITI1 VISUAL BASIC -3

forj: = 010999 do

begin
receive (left, r, temp, a [}l;
send (right, r, temp + 1, bljl;

end ; /* of for statement */

end / * of function step */

call step;

end / * of function step */

In the above program, each cell receives data from its left neighbour, adds one to each data
item before passing it to its right neighbour. . .

W2 is a single Pascal-like high-level programming language for the Warp array. W2 hides the
low-level details of the Warp Computer and provides a high-level abstractuqn 'for vthe Warp
Programmer. Warp modules can be called from a C Program running on the host. This is done through
a well-defined set of functions in Warp User Package.

Assuming three Pascal programs are saved with the following names: PSAMP1.PAS,
PSAMP2.PAS and PSAMP3.PAS in a directory PASCAL of which PASCAL.EXE is found. Then a
SPPVM Module that executes these programs virtually in parallel with VB is as shown below:
Private sub SPPVM_module()

< System settings >
< Interface design>

Shell “C:\PASCAL\PASCAL.EXE \PASCAL\PSAMP1, PAS” ‘Shell Program 1
Shell “C:\PASCAL\PASCAL.EXE \PASCAL\PSAMP2. PAS” ‘Shell Program 2
Shell “C:\PASCAL\PASCAL.EXE \PASCAL\PSAMP3. PAS” *Shell Program 3

< Other Command >

End sub

With this model, n programs could be shelled and run in same memory, provided the compiler
and the executing program paths are correctly specified.

it is also possible to shell different programs running on different compilers.

We here present a compiete VB Program (a SPPVM Module) with two shells; each shell
executes the same program and outputs the resultant time. A sequential version is also presented.
The data used for the illustration are generated randomly. This program serves as an execution
platform. With this idea, the reader can design stratified programs in any language of his choice,
compile them to executable files and modify this module to suit his calls.

VERSIO}\J 5.00
Begin VB.Form sppvm_module

32

MOSES E. EKPENYONG, NNAMSO M. UMOH and ETIM E. EKONG

Caption = "Program Window"
ClientHeight = 3195

ClientLeft = 60

ClientTop = 345

ClientWidth = 4680

LinkTopic = "Formt"

ScaleHeight = 3195

ScaleWidth = 4680
StartUpPosition = 3 "Windows Default

Begin VB.CommandButton Exit_command

Caption = "Exit"
Height = 375
Left = 1680
Tablndex = 4
Top = 4560
Width = 1095

End

Begin VB.Frame Frame1
Caption = "SPPVM Module"
Height = 10956
Left = 1680
Tablndex = 0
Top = 2880
Width = B175

" Begin VB.CommandButton Command 1

Caption = "Shell Programs 1t and 2 "
Height = 375
Left = 240
Tabindex = 1
Top = 480
Width = 4455
End
End
Begin VB.Label Label3
Caption =
BeginProperty Font
Name = "MS Sans Serif"
Size = 12
Charset = 0
Weight = 400
Underiine = 0 'False
Italic = 0 ’'False
Strikethrough = 0O ‘False
EndProperty
Height. = 375

" By: M. E. Ekpenyong, N. M. Umoh, E. E. Ekong."

DEVELOPING SPPVM MODULES WITH VISUAL BASIC

33
Left = 840
Tablndex = 3
Top = 1920
Width = 7695
End

Begin VB.Label Label2
Caption = "Developing SPPVM Module with Visual Basic Interface Screen.”
BeginProperty Font

Name = "VictorianD"
Size = 1b.75
Charset = 0
Weight = 700
Underline = O 'False
Italic = 0 'False
Swikethrough = O ’'False

EndProperty

Height = 735

Left = 1680

Tabindex = 2

Top = 600

Width = 6375

End
End

Attribute VB_Name = "sppvm_moduie”
Attribute VB_GlobalNameSpace = False
Attribute VB Creatable = False
Attribute VB_Predeclaredld = True
Attribute VB_Exposed = False

Private Sub Command1 Clrck()

'Shell programs 1 and 2
Shell "c: \qbasnc\qbasnc exe \qbasuc\O‘SORT BAS" 'Shell first program

Shell "c: \qbasm\qbasuc exe \qbasnc\QSORT BAS" 'Shell second program
End Sub

Private Sub Exit_command_Click() |

End

End Sub

The QSORT.BAS program is written and saved as a QBASIC file and is as presented below:
DEEGLARE SUB gsort {1, r!, al))

COMMON al)
cLs

CLEAR , , 10000
DIM a(500}

34

MOSES E. EKPFNYONG, NNAMSO M. UMOH and ETIM E. EKONG

FORy = 1 TO 500

aly) = INT(RND * 1000) + 1
NEXT y
t1$ = TIME$

PRINT “START TIME: “;t1%
CALL gsort{1, 500, a())
t2% = TIMES$

PRINT “"STOP TIME: “:t2$
END

SUB gsort {1 v, al)
i o I:j -
= allNTi{l +) /2D
CUUWIHLE R < x

Pos b+
LOOP

DO T e al))

LOOP
IFi <= j THEN

SWAP ali), alji:i =i + 1:j = |-

END IF

IFi < ; "HEN CALL gsorti, j, a())

IFi < r THER CALL qsortli, r, al))
END sUB

i

The sequential version (QSORTSEQ.BAS) is as shown below:

DECLARE SUB gsort (i!, rf, a{)}
COMMON a()
CLS
CLEAR . , 10000
A a{1000)
FGCiy = 1 TO 1000
aty) = INTIRND * 1000) + 1
NEXTy
11% = TIMES
PRINT “START TIME: “;t1$%
Akl gsort(1, 1000, a())

SRINT “STOP TIME: *;t2$
ND

DEVELOPING SPPVM MODULES WITH VISUAL BASIC 35

SUB gsort (I, r, al))
i=kj=r1r
x = aliNT{{l + n / 2)
DO WHILE ali) < x

i=1i+1
LOOP
DO WHILE x < afj)

i=i-1
LooP
IFi <= j THEN

SWAP ali), alj): 1 =i + 1:j =j-1

END IF

IF i < j THEN CALL gsortil, j, a{}))
IFi < r THEN CALL gsortii, r, a{))
END SUB \

Since the recursive version of quick sort is used for the illustration, a machine with large
physical memory is required. This requirement is to avoid the out of stack error {(when the array size
is large). .
The VB shell serves as a multi-platform for the execution of different prograins. In the above

module, the QSORT.BAS program shelled twice will execute on the VB Shell plat-form in the same
“memory space. This process drastically reduces the total runtime.

PERFORMANCE TIME ANALYSIS

Results obtained reveals the following:

) SPPVM SEQ. VERS.
First shell Second shell gsortseq.BAS
‘Start time 15:14:09 15:14:19 15:21:32
Stop time 15:14:27 15:14:32 15:22:29
Time diff. 18 secs 13 secs 57 secs
Speedup(Tseq/Tshell) 2.14 2.31

From the above result, the total time taken to run the SPPVMis (15:14:32-15:14:09) =23
secs (without merging), which is less than 57/2 = 28.5 secs, i.e. 1/n x Tsq The efficiency (g} of
our module = Tse/{Tsopvm*N). From the result, the efficiency can be estimated to be approximately
0.99, if merge time was considered.

CONCLUSION

Developing SPPVM modules with Visual Basic allow programs to be shelied on a Multi-platform
provided the Shell path is correctly specified. Thus it is advantageous for programmers to employ

36 MOSES 1 EKPENYONG. NNAMSO M. UMOH and ETIM E. EKONG

these facilities to improve on the efficiency of their programs especially when executing large
computational jobs.

REFERENCES

Chapell D., 1996. Understanding Active X and OLE. Microsoft press, Rc\dr'nond,' USA.

Cornell, G.., 1998. Visual Basic 6 from the Ground up. McGraw-Hill Companies, New York, USA.
Davis, R. S., 1996. Learn Java qu. Micfosoﬂ Press. Redmond, USA

Kung, H T. “The Warp Computer - A Cost Effcctive Solution to Super Computing”. Technical Report on the Internet (2001),
URL http:/www.csm.ornl.gov/pvny/.

