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ABSTRACT

This paper deals with estimation and testing for cointegration when deterministic trends are
present in the data generating process. The study confirmed that to estimate the Vector Error
Correction Model (VECM) when there is no cointegration will produce an egregious pitfall.
Derivation of the linkage between the residual matrix of VECM and the corresponding eigenvalues
of the product moment matrices is provided. The bivariate system designed shows a reversal
relationship between the lag-lenghts and the values of the likelihood ratio (LR) statistic.
Moreover, the values of the (LR) test for different lags at various sample sizes are reported in the
simulation. The Monte Carlo experiment shows that the null hypothesis of no cointegration is
rejected in favours of cointegration inspite of the deterministic trend in the data. The standard Z-
test and t-test prove to be more robust via size properties for a wider range of nuisance
parameter than the coefficient based tests.

KEYWORDS: Cointegration, Deterministic trend, Vector Autoregressive Estimates, Hypothesis
Testing and Data generation process(DGP).
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INTRODUCTION

The concept of cointegration have beeit studied extensively by some researchers in the last ten
years. A critical examination of cointegration from theory point of view says that variables x; and y,
for instance, are both integrated of order 1, denoted by 1(1), if their changes are stationary, then
they are said to be cointegrated if there exists a linear combination, say z=yrax, which is
integrated of order 0, denoted by I(0). Many scholars have defined cointegration as stated above,
but the changes in some of the important feature of an economy can interrupt equilibrium type
relationship possible for an extended period of time. A lot of statistical explanations for not
rejecting the null of no cointegration in empirical works have been examined by Engle and
Granger (1987), Johansen (1996), Perron (1989), Ahn et al (1990), Hendry (1995) and Stock and
Watson (1989) among others. In particular, since the introduction of cointegration tests by Engle
and Granger (1987), the usage of these tests on long-run relationships between non-stationary
time series variables have grown in popularity amongst applied statisticians, economists and
econometricians. Engle and Smith (1998) examined cointegration very carefully and concluded
that a major fallacy of cointegration tests, however, is the need for a considerable span of the
data. ‘
In empirical research works, many researchers have used deterministic trending functions
like polynomials to represent secular characteristics like growth over time to model non-
stationarity. In that case, the time ser'es y, is broken into two components, one to capture trend
and another to capture stationarity fluctuations. Generally, model of this form can be written &5 :

v, =l =y =00 = ylx, (H
(r=1,2,..,1n)
where y'is stationary time series, x; is an m-vector of deterministic trend vy is a vector of m
parameters and h; is the deterministic trend. A more general example where the trends are
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piecewise higher order polynomial is

” n '
Bo= 2,0+ gt )

1=0 =0
where
[ = Cr=my! re{mrr L a)
- 0

m re (0, )

It must be noted that unsatisfactory feature of trend stationary models is that no random elements
appear in the trending mechanism and only the stationary component is subject to stochastic
shocks. By adding a stationary component v; to the (R.H.S) of the first equation of (1) and allow

v, to be generated by first order process, we have
Yol =yl =Ly =y (3)

where u; ~N(0,6%). Now equation (3) decomposes the time series y; into a deterministic trends, a
stochastic trend and stationary residual. When o, the stochastic trend in (3) corresponds to a nutl

hypothesis of the trend stationary. By Gaussian assumption, and if the error is identically and
independently normally distributed, the hypothesis can be tested in a simple way using the
likelihood method principle. This procedure can easily be extended to more general cases where
there is serial dependence, by using parametric or semi parametric methods. Let :
M, =y +u, (4)
and writing its difference as
At = (-0,

where 1, is stationary. It is clear that o, = 0, then Equation (5) corresponds o the null hypothesis
of a moving average unit root 0 = 1. Thus, there is a correspondence between testing for

stationarity and testing for moving average unit root (Saikkonet et al (1993)).

In general form, this work attempts to extend the researches done on spurious regression
where the misspecification is also in the fong memory component and the pitfalls it testing for long
run relationships of the Granger and Newbold (1974). In general, this paper is based on the work
of Gonzalo and Lee (1998) who recommend the non-singularity of the error covariance matrix and
that the cointegrated variables must have a trending and long memory not different from the unit
root tests as two prerequisite conditions for the likelihood ratio test not to suffer from pitfalls. This
work also extend the work of Olowofeso et al (2001) who examined the estimation of cointegration
system using a Monte Carlo experiment. The issue of model misspecification and its
consequences are investigated by using the simple equation-based tests and the system of
equation-based tests of Johansen. More specifically, this paper attempts to link the eigenvalues of
the product covariance matrices to the residual matrix of the VECM. The simulation adopted
attempt to examine the behaviour of the likelihood ratio with different lag-lengths as well as the
testing and estimating of trend stationary models. We estimate the statistics at various sample
sizes and fit a response surface and observed the asymptotic distribution. Precisely, the design of
Q¢ and Q; of Johansen trace statistic and Maximum eigenvalue statistic respectively were
carefully conducted. Section 2 focuses on mathematical and computational framework as well as
hypothesis testing. Section 3 presents the simulated results obtained. Section 4 shows the
concluding remarks,

Mathematical and Computational Framework
Trend Stationary models with deterministic component

The objective of this section is to present the framework which systematically analyses and test
~ cointegration systems. We examined how non-cointegrated systems that contains deterministic
trend components can be improved with the method of analysing cointegration relationship.
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The DGP used here is as defined below when (1) variables with deterministic components

Ay, —ay =il =e, (6)
Ax, =y = Byl =, (7

which is an example of a trend stationary model of the general form defined in (1) with
y' =, B ) x = () and i=12.

Gonzalo and Lee (1998) provide the following proposition for [(1) process with deterministic
component of the type defined in (6) and (7):

Proposition 1: If (y, x)’ are two different (1) processes with deterministic components generated

from equation (6) and (7).

(i) If B+ # 0 or B2 # O and if the vector error correction model (VECM) does not include any
deterministic components, then the first eigenvalue, (A), from the product matrices
T uY .3y, does not converge to zero in probability.

(i) If By =B+ =0 a; # 0 or ap # 0, and if the VECM does not include any deterministic
components, then A does not converge to zero in probability.

Proof: See Olowofeso (2000) \
In erder to capture vector error correction model with X; augmented with 1 and/ or t as considered
In Jehansen (19956), we use

X =[x 1)’ o/, =(x!,1r) to get the following VEC model:
A/\{j = ljs’\li_| Jf' 6(

This model was farmulated to capture a cointegration relationship around a common deterministic
trend (that is, stochastic cointegration as well as deterministic cointegration)
The two cases exainined are:
Case1: When a1l =0a; =0 and 8,=£2-0.01 and
Case2: Whenal=a,=0and By =,=0
For null hupothesis of no cointegration, that is
Ho: r= 0 using Qq and Q, defined as:
Oy ==l -x,)1-%,)]

‘ Q, =-T'In(l-%,)
respectively;
where A; and Az are eigenvalues of ¥ s s iy and

>, (/')Z L R R (i, j = 0,1)are the product moment matrices of the residuals, R, and Ry, from

the regression of A, and y,.; on the lagged differences respectively. The T is the sample size, Qs is
the Johansen trace statistic and Q; is the maximum eigenvalue statistic. Then the trace test
statistics for the hypothesis that there are at most r cointegrating vectors, and hence s = (2 - 1) unit
roots or equivalently, s zero characteristic roots, is

E=-n*Y 1 . In(1~4,). The asymptotic distribution of Q; depends only on s, and 5% critical value
for s = 1 is 3.84(see Johansen's Likelihood Ratio Test Statistical table), and that of s = 2 is 12.53.
Since the eigenvalues of ¥ iy 5 .1y are the same as the one of 3 U's" 3 3 and
since the vector errof correction representation of  Xi=(xt,yf)" is

K|
CAX, =TI ok Z]—V“/ A’\}/wz + € ‘ (9)
' =0
with €, assumed to be a Gaussian i.i.d (0Q) process and Q > 0, then

Q=y WS WYY, it follows that |3 (,O{*’[{fl‘n:‘l;wZ;,‘(')Z(,,Z{,ZW[, which produces the
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relationship log

gz(r)[::log,‘z Wt D log(lu):,):' Little mathematical manipulation produces the
maximised likelihood function

A, (-4 ]

It must be noted that if the hypothesis .involved just I(0) variables, we would expect twice the log
Ikellhoed ratio, that is,

215 = 1) =1 S lowli - )

sl

/.‘"/' -

M

(See Hamilton, (1604)). where /., I8 the log-Iikelinood function under the absence of constraints,
1, Is the leg-likelihoed functien under the constraint and A ls as earller defined. Another approach

Is to test the null of hypothesis of /i eointegrating relations against the alternative of h+1
cointegrating relations. Twice the leg likelihood ratio for this case s given by

ny log(l = me>

We also considered the four cases for the first -order autoregressive when the true process is
random walk.
Case1: No constant term or time trend in the regression; true process is a random walk.
Case2: Constant term but no time trend included in the regression; true process is a random walk.
Case3: Constant term but no true trend included in the regression; true process is a random walk
with drift.
Case4: Constant term and time trend included in the regression; true process is a random walk
with or without drift. :
If the true model for case 4 is

Ye=at Y+ U (12)

where u; ~ N(O,o2), then the true value of a turns out not to matter for the asymptotic distribution. In
contrast to the previous cases, we now assumed that a time trend is included in the regression
that is actually estimated by OLS:

Vi=a+ pyry + ot + Uy (13)

If a = 0, yr.s would be asymptotically equivalent to time trend. ‘
The hypothesis are: Ho: y= a +y.+u, a >0 that is whether this trend arise from the positive
drift term of a random walk against Ha: 1= a+ot +py..+v,, /p/ <1

Gonzalo et al (1998) attributed the pitfalls of Johansen's likelihood ratio test to the behaviour of Q.
and Z o1 when they postulated the following proposition:

Proposition 2: (a) The eigenvalues of ¥ 'y v 15 are the same as eigenvalues of

[=1~ z -1(): where (2 is the covariance matrix of the residuals of the VEC model:
AV, =11V, + €,

calculated under no rank constraint and Z o I8 the residual covariance matrix,

Proof. See Gonzalo and l.ee (1998)

Indeed, Gonzalo et al (1998) stressed the need for a deep pre-cointegration analysis for adequate
application of likelihood ratio test to avoid pitfalls. Accordingly, we examined the link between the
eigenvalues and the coefficient of determination of the residuals of the VECM by postulating the
following proposition:
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Proposition 3: If & represent the coefficient of determination of the /' equation of the VECM,
under the null of p independent random walks, then

Z :le Op(1) (15)

= p=t

Proof:
Since equation (6) and (7) can be written in the following VECM form:

AX( = [o 0 a [3][xm 1 + &
0 0 a i

=11\ + ¢,

By examining the result from bivariate peint of view; we have AX; = Xu1t+cy where Xi=(x5, xz)' and
the errors are assumed to have zero mean and the following covariance matrix

: Q=( o/ Voo,
Voo, o

the eigenvalues of S 'y 'S 'y . It can be prove that these eigenvalues are the same with

Ny Yy, due to the symmetry of the matrices. In addition, Q, SN LYY, s where
hat €, is the estimated error covariance matrix. This implies that eigenvalues above are the same
with eigenvalues 7> O Thatis, Y * 4 =Trace(/7-> Q)

U(!

=Trace [(} ()} - [Z‘ Zel’r‘:-’}-[ [ZC! L\“‘ J
0 1 DeE, Ye 2euen 2o

.

N

where R, (i = 1, 2) are the coefficients of determination from the first and the second equations of
the ECM. The first term in the numerator above converges to zero in probability, by the luw of

large number. Suppose 0 = 0 in Q, the numerator converges to 1, giving us the required result for
p=2, by induction it is also true for p > 2 eigenvalues.

2.2 Statistical Models for case (SMC) 1 and 2 of Integration of order one I(1) with
deterministic component

DGP:
AY, =)+ Sty and AX =y + Dot + ¢y
Thus
SMUC: AX =1]y X, + &y, (18)
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in matrix form we have

Ay, 1 = AXi = Loy 3 Ay, + ey,
A\l Us [52 AXI - ISENN

SMCyr AX = o+ X+ eg )

=lag |+ ota By Yia |t €
Gy o [}2 {1 €1

SMCs AX =+ O+ 11X+ &y

Similarly
o

(20)
Ay | = de | T (U o B (v ] €
AX, [3o [Su RN X SRR
SM(/‘.M AXl = H; IXII_] ]V% €
_ (21
B s 1 I
/\)‘1] SAX - 10wy Iy [.\'/ ]1} ey,
AX[ p 0 (S 3) Bg S
SMCr AX = 1 [N T e
(22)

('}\_\',“I SAN, [i) 0w, {ﬂ [_\-,“I/J g [/?;m'
Do .

S T

with T=100, SMC,, (=1,2,..., 5) and i=1,2 ; equations (18), (19), ..., (22) are statistical models
used to estimate the Johansen statistics of Q; and Qo.

The Engle and Granger (EG) are calculated from the cointegrating ordinary least squares
regression without a constant (SMCy), with a constant (SMC;) and with both a constant and trend
(SMCs3). A total of 1,000 replications are used and reported at 5% level. The critical value for each
of the three regression models are simulated from 100,000 replications using the DGP with o= ay
=0 and ;= /» = 0. The simulation results are presented in section 3.

2.3 Hypothesis Testing.
In addition, various test of hypotheses for the parameters of the regression model y, = a + py¢—1+ut

under the assumption that the true a = 0, p = 1 and u;is i.i.d with mean zero and variance o°, was
conducted. The first one is the Phillips-Perron p statistic defined by

P =20 e o Vi =y

(23)

where
T is the sample size, pis the estimated coefficient of yM in the autoregressive model, a, is the

3

ordinary least squares variance of p.s* =(/'=4k)"> 7w is the usual formula for the residuals
from the model, k |s number of parameters in the estimated regression, in this case k 2, vy is the
autocovariance, /’is the Newey-West estimator defined by

= 70 - “Z[‘[l¢/ (/f]’/b

(24)
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. . / ~ ~
g is the number of autocovariances considered and y;= T 2 il i the " autocovariances of

u; (See Hamilton, (1989) and Hamilton (1994) for the derivations of Phillips-Perron p statistic and
Newey-West estimator).

3. Simulation Results

The DGP used when Equations (6) and (7) are I(1) with deterministic components and when we
vary lag from 2 to 10 in the simulation, then produces LR test for the DGP recorded in Table 1
below. The likelihood test statistics for the bivariate system defined in (8) and (7) shows that as
the number of lag increases then the values of the likelihood statistics decreases for a given fixed
sample size. '

CTable 1: Values of LR Test for lag 2 to 10.

{V&;;ng}plc Time Lag=2 Lag=4 Lag =8 Lag 10

N 100 R, 62.170 61.885 34.887 22.055

N 100 R, 35.158 28.826 12.636 8.715

N 100 Rs 16.926 10.929 3.090 2.486

N =200 R, 147.902 112,608 67.886 53.557

N = 200 R, 72.138 50.009 36.257 30.604

N =200 Ry 24.648 22.630 17.038 13.186 |
TN = 400 R, 205.118 196.547 175.294 125.524

N = 400 R, [12.658 101.025 95.556 56.707

N - 400 R; 52.125 48.194 40.001 10.125

The truncated and untruncated time used are defined as Ky, R, Ry of fixed tyme of

unrestricted time respectively.
The result of the non-cointegrated systems that contained deterministic trend components when we used the DGP in (6) and (7)
are presented in table 2.

" 20 seconds, 21-30seconds and computer

Ctable 20 1(1) with deterministic components.

Case A: When gy = ¢y = 0 and 3, = 3, = 0.0] EG 1 Q=TS Q. = MES
SMC, AX =T + &, 0.047 1.000 1.000
SMCa: AX = 1t LXK | &, 0.068 0.625 0.586
SMC; AX, =1+ Ot + ILX 1 g 0.054 0.016 0.044

) N 1.000 1.000
SMCAX =11 (X1 ) + e

smcs ax = (X 1) e 1.000 1.000
“Case A When oy = @ = 0 and By = Py = 0.01 EG Q, =TS Q,= MES
SMC AX, = 11X, F e ' 0.073 1000 1.000
SMCy: AX, = g+ ThX o+ e 0.080 0.024 0.045
SMC; AX, = i+ O+ 11X+ &, 0.067 0.063 0.064

NN 1.000 1.000
sMCyax =11 (V1) v e,
SMCs AX, = 115 ( X 1) + e 1.000 1.000

T= 100, SMC; (i = 1,2...,5) are the statistical models used for estimating the Johansen statistics Qy
and Q.. The dimension are as earlier discussed in equations (18) to (22). EG is computed from
SMC,, i =1, 2, 3. The frequency of rejecting the null in 10,0000 replications is reported at 5% level.
The critical values for each of the three regression models are simulated from 100,000 replications
using the DGP with a7 = a2 = 0 and g1 g2 = 0. The integral of order 1 with deterministic
components for case A and B of the DGP of table 2 shows that the Engle-Granger (EG) statistic
for SMC; in both cases has higher values when compared with the EG values of SMC; and SMCs;
in cases A and B. The model developed for I(1) processes with deterministic component as shown
in table 2 shows that VECM with X, augmented with 1 and / or t as consistent with Johansen
(1995). This model was developed mainly to capture a cointegration relationship around a
common deterministic trend. It shows that estimating the VECM with X., when there is no
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cointegration will produce an egregious pitfall. The Q; and Q; behave very similar under the null of
no pitfall but the results are totally different under the alternative of pitfall. We recommend that
both tests should be used in research work.

(n addition, when the approach of Mackinnon et al. (1996) and Nielsen (1897) was used to
estimate the statistics at various sample sizes and fit a response surface and observed the
asymptotic distribution. Precisely, the design of Q; and Q. of Johansen trace statistic and
Maximum eigenvalue statistic respectively of SMC; (i=1, 2,...,5) cases with 100,000 replications ,
and sample size 50, 100, 250, 1000, 2000, 4000 produces the result in Table 3 below.

Table 3: Bstimation of the response surface regression.

r n 1 U SSEM T U SE
1500 1.243 0.0045  150,100,...,4000 | 1.184 0.004]
500 TS 843 0.009 150,100,...,4000 | 5.082 00011 |
00 T30 0.021 50,100,...,4000 | 40.22 0.048
1000 188.10 0.050 50,100,...,4000 | 186.14 0.083

In Table 3, v is the mean and SSEM is the simulated standard error of the mean when M=100000.
Columns five, six and seven are the sample size, mean and the standard error, respectively.
These results were obtained with a response surface of average of thirty experiments with T =

500. The response surface is a regression of |t on a constant, Tlljand ~l w is the coefficient on
~the constant term, with corresponding standard error (S.E). The standard error of the constant in
the regression coefficient is quite informative on the mean of the asymptotic distribution. The
SSEM is informative on the accuracy for that specific size. The estimates of the mean of each test

are obtained by automated regression on a constant, 71 and 7;14; and dummy for T=50. Any of the

b

term, that is, the dummy, /i and ~1~ are dropped when we discovered they are not significant. It

- was also observed that as the n inéreases for both the single simulation with M=100,000 and the
response surface based on the average of thirty experiments with M=500. The standard error also
displayed this increase characteristic value as dimension $n$ increases from 1 to 10.

Table 4: Phillips-Perron Tests - Truncation lag =8 for x, e
_Null hypothesis Test Statistics | Asy. Critical Value 10%
t Constant, No trend

A(1)=0, Z-Test -41.813 -11.2

A(D)=0, T-Test -5.8574 -2.57
CAO)A(1)=0 o | 16.963 3.78 o o

Constant, No trend -

A0, Z-Test -41.720 -18.2

A1) -0, 1-Test -5.8036 3.5

A=A =A2) = 0 11.562 4.03
AOFAC) 0 16562 531

Table 5; Phillips-Perron Tests - Truncation lag =8 for ), i I

Null hypothesis Test Statistics Asy. Critical Value 10%

Constant, No trend -

A(1y=0, 7Z-Test -42.460 -11.2

A(=0, T-Test -6,0181 ' ' -2.57

AOY=A(1)=0 17.89] ‘ 3.78 -
Constant, No trend

A(D=0, Z-Test -42.123 -18.2

A(1)=0, T-Test -5.9735 =313

A(0)=A(1)=A(2)=0 11.667 3

A)=A(2)=0 17498 R
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Table 6: Johansen Cointegration Test of no determinjstic trend in the data generated,

igenvalue Likelihood Ratio 5% Critical Value 1% Critical Value ! Hypo. No of CE(s)
0.708 119041271 12.53 1631 | Nong * * v
0.490 6735.194 3.84 651 | Atmost [ * *
(**) denotes rejection of the hypothesis at 1% significance level
Table 7. Unrestricted Vector Autoregression Estimates when constant is not included.
Lag variables(s) and Statistic Variable (x) Variable (y) |
x(-1) -0.682115 -0.517381
(0.00992) (0.01050)
- (-68.7844) (-49.2669
x(-2) -0.341389 -0.388649
(0.01056) {0.01118)
(-32.3382) (-34.7645) ]
y(-1) 0.019067 -1.142572
(0.00775) (0.00821)
(2.45921) (-139.157)
y(-2) 0.054381 -0.508019
{0.00699) (0.00740)
I e (7.78224) (-68.6514)
R-squared 0.336278 0.780058
Adj. Resquared 0.336078 | 0.779992
Sum sq. resides 39396.84 44181.16
S.LL equation 1.985758 2.102878
Log likelihood -21036.83 -21609.61
Akaike AIC [.372401 [.487014
Sclnvarz SC 1.375286 1.489899
Mean dependent -0.000378 -0.000366
8D dependent 2.437009 4.483263 i
Det. Residual Covariance = 1570717
Log Likelibood = -32133.28
Akaike Information Criteria = 2.754918
Schwarz Criteria = 2,757803 o - e

Standard crror and t- statistics in parentheses fronmi top 1o down respectively

CFable 8. Unrestricted Vector Awtoregression Estimates when constant is included.

Variable (y)

Variable (x)

(1) -0.682114 ~0.517381
(0.00992) {0.01050)
- e (-68.7809) (-49.2044 e
x(-2) -0.341389 -0.388649
(0.01050) (0.01118)
SR I G251 W I - /o) W
v(-1) 0.019067 -1.142572
(0.00775) (0.00821)
R e e (2.45909) (-139.150) _
v(-2) 0.054381 -0.508019
(0.00699) (0.00740)
e | (7.78185) | o8.6480)
C -7.771 - 05 6.161:-05
{0.01986) (0.02104)
— N 000391y (0.00293) N
- i-squared 336278 0.780058
Adj. R-squared 0.336012 0.779969
Sum sq. resides 39396.84 44181.16
5.4 equation 1.983857 2.102983
Log likelihood -21036.83 «21609.61
Akatke AIC 1.372601 1.4872 14
Schwarz SC 1.376208 1.490821
Mean dependent -0.000378 -0.000366
5.D. dependent 2.437009 4.483265

| Det. Residual Covariance = 15.70717
| Log Likelihood = -32133.28
Akaike Information Criteria = 2.755118

Standard crror and (- statistics in parentheses from top to down respectively
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Table 9. Vector error correction estimates with linear trend involving constant and trend in data

Lag variable(s) and Statistic -~} Variable (x) o Variable (v) ‘ ‘7
Cointegrating L. B 1.000000 ) S
x(-1) ) 6.887494
y(-1) {0.27099)
S A €2 1 1= R N
Q TREND(1) -5.675-08
(1.0E-05)
00056 ) -
C 120.002302 o
(1.0L-04)
o (Lov-04) |
Error Correction: D(x) B ) D(y) .
Coint Eg.1 -0.052844 -0.601402
(0.00382) (0.00406)
- (-9.08250) (-148.214)
D(x(-1)) -0.963761 0.340135
(0.012653 (0.00882)
e (-76.2001) 1685614
D(x(-2)) -0.482219) 10.100743
(0.01100) (0.00767)
1 (-43.8548) L (13.1373)

",1'5(’)"“(?5)_%“7%%" 0.299435 1.653935
(0.02879) (0.02008)
e R R L L L L (823815)
D(y(-2) 0.169372 0-47942:4
(0.01149) (0.00801)
749 ls98459)
C -0.000970 0.001744
(0.02081) (() 01870)
S 1) W 111
R-squared () 598708 0.950362
Adj. R-squared 598507 (J.95()33
Sum sq. resides 71 7066.85 3490532
S.1L equation 2.680542 1.869418
Log likelihood f -24032.11 -20430.36
Alkaike AIC 1 1.9720638 1.251855
Schwarz SC | 1.976967 1256183
Mean dependent ) -0.000766 -0.000830
SO dependent 14230424 838861
Determinant Residual Covariance= 21.06042 ]
Log Likelihood == -33595.58
Akatke Information Criteria = 3.0488906
Schwarz Criteria = 3.054307 S R

Standard error and t- statistics in parentheses rom top to down respectively.

It was observed that the unrestricted vector autoregression estimates when constant is included
and when constant is not included in the model show that the two models exhibit the same
characteristics it terms of their robustness and significance of the estimated parameters. For
instance, the Akaike Information Criteria values are 2.758725 and 2.757803 respectively (See
tables 7 and 8). From table 6, tne L.R. test indicates 2 cointegrating equation(s) at 5%
significance level,

Log likelihood is -33439.395.

The first line of table 6 shows that the likelihood ratio is greater than the critical value at

The hypothesis is rejected in favour of cointegration inspite of the deterministic trend in the data.

It must be noted that all programmes are written in Microsoft Visual Basic 6.0 Enterprise, Shazam
program and subroutines are partially adopted from White Kenneth's SHAZAM Econometric
computer program and E-Views computer software
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4. CONCLUDING REMARKS

This work shows that cointegration tests for both univariate unit root tests and likelihood ratio test
are very important since pretest for individual unit root is not enough to detect spuriosity in trend
stationarity models. It was confirmed that the singularity in VAR that comes from error correction
matrix gave a misieading results unlike the one obtained from long-run impact matrix. One other
picture displayed by our investigation on the case where variables that have long-memory
properties and a trending behaviour but they are not pure I(1) processes are that the VEC
estimates gave better estimates in terms of the R-squared and lower standard error for the model
when compared with the unrestricted cases. This paper shows the existence of reversal
relationship between the values of LR statistic and the lag-lengths. We also observed that the AIC
and Schwarz are more robust and the Z-test and T-test are more stable for size properties for a
wider range of nuisance parameter than the coefficient based tests. The effect of the sample size
was captured from the simulation. This work also derived the asymptotic relationship between the
eigenvalues of the product matrices and the coefficient of determination of the VECM residual
matrix. We hope the above mentioned reversal rpelationship between LR statistics and lag-lenght
could be a base for further mathematical investigations that establish the conditions needed to
eliminate this type of pitfalls attributed to the LR. The work on the stationary model with both
deterministic component and stochastic Components of the type described by the general form of
equation (3) is in progess.
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