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ABSTRACT

Difference equations are derived for third order moments and cumulants for bilinear multiplicative seasonal ARIMA

(0,d,0) x (1,D,1), time series mode! studiad by lwueze and Chikezie (2005). The third order cumulant structure are ~

shown to be the same as the covariarce structure. The moments ( first, second and third ) and cumulants obtained
¢:2 used for:- (i) determining uniquely the periodicity of the series, (i) initial estimation of the model parameters, and
(iif) determining uniquely the region where the parameters lie. The initial estimates are then used to obtain least
squares estimates of the parameters iteratively.

KEYWORDS: Bilinear models, multiplicative seasonal time series, moments, cumulants, standardized cumulants:
1. INTRODUCTION

LetY, te Z and e, te Z be two stochastic processes defined on some probability space (Q, F, P), where Z ={

-1, 0, 1, . }. For our purposes, ¢, t a Zis Taken ‘0 be a sequence of mdependent and ldentlcally distributed .

random variables with E(e;)=0and E(e’)=c2 < LetX = (1-B)° ( 1 B*)° Y,, where ( 1-B )" is the regular
differencing to remove the stochastic trend ( if any ) in the series and ( 1-B° ) is the seasonal differencing operator
used when the mean of a realization shifts according to a seasonal pattern.

Second order covariance analysis of the bilinear multiplicative seasonal ARIMA (0,d,0) x.(1,D,1), time series
model :
Xi=oXs + Bes + yXis€us + € (11)

have been studied by lwueze and Chikezie (2005). The second order properties of (1.1) are similar to the linear time
seriec equivalent, with y = 0. For the stationary time series X, t ¢ Z satisfying (1.1) and its linear equivalent, the
autocovariances/autocorrelations are zero everywhere except at lags s, 2s, 3s, ... In fact, they have similar second
order covariance structure as that of ARIMA (1,d,1), except that the non-zero autocovariances occur at muitiples of lag

s; which in turn are characterized into seven regions discussed in Section 2.
As has been noted in the literature ( see Subba Rao (1981), Akamanam (1983), lwueze (1989) ), second

order covariance analysis is not sufficient to distinguish a linear model and a bilinear model. Higher order moments

and cumulants are therefore required.

The object of this paper is to derive the third order cumulants of (1.1) and to show that it maintains the known
covariance structure at a specified plane. We will also investigate the use of the covariance structure and third order
cumulant structure to determine the periodicity s and pre/ide initial estimates of the parameters. The initial estimates

are then used to obtain least squares estimates of the parameters iteratively.

2. SECOND ORDER MOMENTS: A REVIEW.
Iwueze and Chikezie (2Q05) have obtained the following results fer (1.1):

1, o= E(X) = 6" y/{1-a), Jof <1. A (2.1)
2. E(X &) = o (2.2)
3 E(X.e’) = o’ n (2.3)
4. E(X’e)=2c’p (2.4)
5. E(X’el) = 6’E(X) + 206 (2.5)
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0'~2[1+/32 +2aﬁ+27,u(1+a+,[3)]

6. = E(X?) = 2.6
p’2 ( l) l_az_o_z}/z\ ( )
provided that o’ + o®y? < 1.
7. R(0) = E[(X-w?] = E(XZ) -4 (2.7)
8. R(S) = E[(X;- 1)(Xuws = 1) ] = E( XXuus ) - 12 = aR(0) + o*(B + ) (2.8)
( RO), k =0
R(s), k = s
9. R(k) = 4 o*'R(@s), k = as, a = 1,2,3, ... (2.9)
0, otherwise
\
10.  px = R(k)/R(0) (2.10)
(1, k=0
pss kK = s
= { a'p, k=as a=1,23,... (2.11)

0, otherwise

\

‘The autocorrelation functions ( ac.fs ) are characterized into seven regions ( see lwueze and Chike)zief(2005)ﬁ~ ’
; which are shown in.Table 1.

Table 1: Behaviour of autocorrelations for model (1,1'1.

Region Sicn and behaviour of py.

. — A

-

1. a>0,8>90,y#0,suchthata +p >0. | ps >0 and all non-zero ac,f's positiv::.

[ 2. a<0,$>0,y=0,suchthata+[3>0. | ps >0 and decays with alternating sign.

3. a<0,8>0,y=0, suchthatu +p <0. | p; <0 and decays with alternating sign.

4. 0 <0,B<0,y=0 suchthata+p <0. | ps <0 and decays with alternating sign.

5. a>0,B<0,y=0,suchthata +p <0. | p, <0 and decays with alternating sign. ]

)
6. >0, B<0,y=0 suchthata +8>0. | ps >0 and all ion=zero ac,f's positive.

7. a=-B,y=#0, suchthata +p =0. Not white noise [(a) ps >0 fora> 0,8 <0

such thato+p=0andy=0, (b) p, <0 for

0<0,p>0suchthata+3=0andy=0]
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3. THIRD ORDER MOMENTS AND CUMULANTS

Let us assume that X,, t € Z is a real third order stationary process for which moments up to order 3 exists. By
virture of the assumed third order stationarity, the third order moment

m(kI’kZ) = E( X, X!‘kl Xl—kz ) (31)

dependé only on k, and k; for all admissible values of t, k, and ka.

The third order cumulant

nekiko) = E[(X, - p2) (X,y, - ) (X, - )] (32)

- is identical to the third order moment about the mean. Simplifying (3.2), we obtain

p(kik2) = E(X, X,_kl X,_k3 ) -u Rtkl) + R(kz) + R(k;-k;) ] - p3 ’ - (3.3)
If the time series X, 't e Z is a real valued stationary time series, the following syrhr}\etrié: relationé - 8%
u(kik2) = pcka,ky) = pl-kika-ki) = p(ki-ka,-kz) (3.4)

"hold ( see Gabr (1988), Sesay and Subba Rao (1991), Cyet and Iwueze (1993) ). It follows from (3.4) that u(y.ks) is
completely specified over the entire plane by its values in any one of the six sectors shown in-Figure 1. In view of the

symmetry, we need to -

A
k2

3) ) (1)

(5)

.Figure 1: Symmetry of p(ki,ky).

calculate cumulants for positive lags only. All we want to achieve in this papér is to distinguish between the linear and -,
bilinear forms of (1.1). It is sufficient for our purposes to calculate p(ks,kz). For ky > 0, k, > 0 on the line k; = kp of |

Figure 1.

In deri';ing Equation (2.1) through (2.11), wueze and Chikezie (2005)' assumed that the random variables6 e, t
¢ Z are Gaussian with E(e,) =0, E(e?) =' o’ <w, sothatE(e’®) = 0, E(e*) = 3¢*, E(e’) = Oand E(e°) =
166°%. Alsoassumed.is the fact that by expression (1.1), e, is independent of X, h <t. :

Based on these assumptions, one can verify that the following are true= °

E(X.e’) = 3¢* (3.5)
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E(X’e) = 30° 1, " (36)
E(X’e’) = 6cpn ' ‘ (3.7)
E(X’e?) = P E(X’)y + 601 = o py + 6a*p @38 | \

where py = E(X>).
E(X’e’) = 9c*m, + 64° (3.9)
[1 :_-‘as - 30’ ay’JE(X])
= 30%y [ 30%° + 302+ 20B Jpp + 36% [a + ap? + 20°p + 60%ay® + 66°By’ In
+3c*y[1+ 4aB +3p% + 20%4°) (3.10)
In obtalnlng (3.10), we assumed thato® + 3o’ a y < 1, and this is a sufficient condition for the existence of the third

order moment of the time series X,, t ¢ Z satisfying (1.1).

Now we obtain the third order cumulants. ' Limiting our search-to the line ky=k,=k, k=0, 1, 2, 3, .": ‘ot Figure 1, :

we have from (3.3) that v
w0,0) = E(X’) - 3uR(0) (3.11)
ulok) = E(XiXud) - p[RO) + 2RK)] - p’ (3.12)
Computation of (3. 12) is done by Iookmg ats = 1, é, 3, ... For want of space, v:/'é demonstrate thééoﬁ;putétidhs
whens = 2. o . '

When s = 2, Equation (1.1) becomes.

Xi=aXe + e+t y X + & (3.13)
and

X xt-kz = o Xp.2 xt-kz + Be. X(-kz + ¥y X2 €12 Xt-kz- + e Xl (3.14)
Based on our assumptions and ‘previous results ( Equations (2.1) through (2.9), and (3.5) through (3.10) ), we obtain *
for: s
k="F

E(XXe1) = E(Xe2Xer?) + YEKX 282X = aE(XiaXe?) + 6711, (3.15)
= WD) +p[RO)+2R1) ]+’ =0 [p(1,1)+p [RO)+2R(1)] + ']

+(1-a)p[R(0) + 1]
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= (1-a)u(1,1) =20
= u(1,1) = 0 (3.16)

sincea # 1andR(1) = Ofors = 2.

E( X X2 )= E(X) +BE(X2e) + YE(X &) (3.17)
= W22)+p[RO)+2RQ@) ]+’ =a[p0,0) +3 RO+’ ]+20° Py
+30°y 2
=a[n0,0)+3uRO) +p’]+206°B
+ 3(1-0) u[R(O)+ ],

= w22) = ap(0,0)+2s’yR(O) (3.18)

E(XXisD) = E(Xi2X3%) + YE(Xp2800X137) = E(Xe2Xes?) + 67yh2 (3.19) .
= W3+ p[RO)+2RE) 1+ =ap(1,1)+p[RO)+2R(1)] + 1]
+(1-a) u[RO) +p*]
=  n33)=ap11) =0 - (3.20)
since R(3) = aR(1) = 0fors =2

k = 4:

E(XXes)) = €E(X12X1a?) # YE(X12802X17) = AE(Xe2Xia®) + 07YH2 (3.21)
= u(44)+p[RO)+2R@) ]+ 1’ =a[p(2.2) + n[RO)+2RQ2)] + ]
+(1-a) u[RO) +p®]

= u4.4) = au(2,2) (3.22)

Continuing, we obtain : u(5,5)-= 0; 1(6,6) = o p44) = ol ;:(2,2'),—-;1{-7,7) = 0; u(8,8) = ai(66) = o p(2,2); and

SO on.

Generally, for all values of s 2 1,

[ E(X?) - 3uRO) - 1, k=0
(k) = J o p(0,0)F 262y R(O), k ='s (3.23)

o™ u(s,s), k = as, a = 2,3,4, ...

\ 0, otherwise.
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We introduce a standardized third- order cumulant given by

pkk) = pk.k) / p(0,0) (3.24)
I, k=20
= a + [267yRO)/p(0,00], k = s (3.25)

o' p(s,s), k = as, a = 2,3, 4,

0, otherwise
\

From our analysis so far, we diaw the following conclusions

(1). For the linear multiplicative seasonal ARIMA (0,d.0) x (1,D,1)s models, third order

moments and cumulanis are zero.

(2). For bilinear multipiicative seasonal ARIMA (0,d,0) x (1,D,1)s models, third order
cumiulant structure are similar to the covariance structure ( see computations for a
simulated example in Table 2 ). This deviates from previous resuits obtained by
Sesay and Subba Rao (1991) and Oyet and lwueze (1993).

(3). The special characteristics of our derivations is that

= R(2s)/R(s) = n(2s,25)/ u(s,;8) = pas/ ps = p(25,28) / p(s,s) (3.26)

Table 2. Sample autocorrelations ( r«) and standardized cumwants ( r(k.k) ) for (1.1) with
a=0.8p=04,y=02, e ~N(0,1).n=100.

s=1 - s=2 s=3 s=4 s=6 s=12

k I r(k.k) I r(k.k) i r(k.k) [ r(k,k) M r(k.k) i | rkk)

1 0.84 0.85 0.00 -0.20 -0.18 0.00 -0.34 -0.22 0.07 0.28 011 | 0.27

2 0.58 0.60 0.86 - 0.91 -0.21 -0.20 0.32 ~ 033 -0.10 0.20 0.16 ] 0.44

3 0.36 0.43 0.05 -0.18 0.88 0.91 -0.34 -0.25 -0.15 -0.18 0.01 | _0.07

4 0.21 0.28 0.65 0.73 -0.17 -0.02 0.85 0.87 -0.09 -0.28 £14 -0.18

5 0.11 0.18 0.11 -0.10 -0.26 -0.19 -0.33 -0.18 0.01 -0.17 £€13 | 031 -
6 0.02 0.11 0.50 0.61 0.72 0.76 0.28 0.19 0.81 0.87 003 0.05

7 -0.08 0.03 0.16 -0.01 -0.15 -0.03 -0.34 -0.31 0.12 022 212 | 003

8 -0.15 -0.01 0.35 0.47 -0.32 -0.23 0.63 0.64 -0.13 0.02 - 015 |  -0.34

9 -0.20 0.00 0.22 0.11 0.60 - 0.61 -0.30 -0.19 -025 | 007 002 | 0.19 .
10 -0.20 0.02 0.20 0.37 -0.11 -0.02 0.22 -0.02 013 | 0326 016 | 0.40
11 -0.18 0.01 0.29 0.25 -0.36 -0.25 -0.30 . -0.26 0.04 | -0.16 £10 | -006
12 -0.14 0.02 0.08 0.24 ' 0.49 0.50 0.44 0.42 0.55 | 0.50 079 0.88
13 -0.13 0.01 0.34 0.38 -0.08 -0.02 -0.26 -0:15 0.16 | 0.11 006 -0.26
14 -0.17 -0.04 -0.01 0.08 -0.36 --0.26 0.15 -0.14 -0.15 -0.02 013 0.43
15 -0.22 -0.09 0.38 0.49 0.43 0.48 -0.19 -0.14 -0.17 002 0.05 -0.1
16 -0.22 -0.12 -0.05+ -0.02 -0.07 -0.05 026" |— 0.24 019 | 012 210 | 01
17 -0.20 -0.15 ) 0.38 0.54 -0.35 -0.26 -0.19 -0.09 0.05 012 G 16 -04
18 -0.18 -0.16 -0.08 -0.05 0.40 0.49 007 | 0.19 0.40 03« 5] 0.11
19 -0.17 -0.14 0.36 0.51 -0.06 -0.09 -0.07 | 0.06 015 005 -0.06
20 -0.12 -0.08 -0.05 -0.07 -0.35 -0.24 0.13 i 0.14 -0.13 015 -0.30
21 -0.06 -0.04 0.32 0.49 0.38 0.47 -0.11 ! 0.06 -012 00 0.c0
22 -0.03 -0.10 0.00 -0.07 -0.05 -0.11 I -002 | 023 | -£22 063 0.31
23 -0.02 -0.14 0.25 0.46 -0.29 -0.21 : 0.07 | 004 | 0.00 022 -0.14_
24 0.03 -0.07 0.03 -0.09 0.36 0.44 | 066 | 0.04 031 0.25 065 |
25 0.13 0.11 0.18 0.41 -0.03 005 | -003 ! -001 ! 0.10 -0 ota 018

4. IDENTIFICATION AND INITIAL ESTIMATES

Specifying the model (1.1) means finding the seasonal lag s and the estimates of the parameters q, f, y, and

o°, the residual variance. All proposed methods of identification such as Box and Jenkins (1976) and many others,

explont the use of pattern recognition and we have seen the presence of certain patterns in both the covariance and
cumulant structures. K

We have derived the covariance and cumulant structures of (1.1) and have shown that' the
autocovariances/autocorrelations and cumulants/standardized cumulants are zero everywhere except at the multuples
of the seasonal lag s. An estimate of the seasonal lag s can be obtained by computing the sample
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autocaorrelation and standardized cumulant of the process and choosing as s the first lag at which the autocorrelation
and standardized cumulant are non-zero. Now the following estimates are necessary

A‘ l d by 4
M, = 4, = =Y X2 :
, = nZ : (4.1)
. l n
M, = j = ;ZX,’ (4.2)
- t=| HE o
" 1 n-k - _
Co= R) = 23 (x,-F)(x.~¥) (43
1=| y N ]
n o=/ = CJC, (4.4)
n-k
Clkk) = ilkk) = = 3 (x, - X)(X,,, - X) 45)
n t=|
r(k,k) = plk.k) = C(k.k)/C(0.0) (4.6)
w})ere
— l n
X = -Yyx, (4.7)
h 1=

Simulations.of Table 2 vividly illustrates the determination of s forn = 100-with a = 0.8, = 0.4, y = 0.2 taking from
egion 1:and-e; ~ N(0,1}). Our simulations in other regions gave similar. results. The program used for simulation and
sstimation-were written in Fortrann 77 by the authors, coupled with MINITAB software which was used to generate the

‘ando data
The-wiitial estimate of o, the autoregressive parameter is obtained from (3.26) by replacing theoretical values
Jy their sas¥ple equivalents. Using second order moments we obtairt

dl' = C'VZ.\' /C\ = rZ.\' /r\ (48)
wnile,.using the-third order moments we obtain

o, = C(25,25)/C(s,s) = r(2s.25)/r(s.s) (4.9):

Simulations of Tables 3 and 4 illustrate the computations for n = 100 and n = 500 respectively with o = 0.8, 3*= 0.4, y =
2.2, e~ N(0,1).

Table 3: Sémple estimates of first, second, third order moments and curnulants for (1.1) with
a=08,3=04,y=02, e~N(0,1),n=100.

s X Co Cs Cas C(0,0) C(s,s) C(2s,2s) M; M; a',l &,
1 0.8455 6.4006 . 5.3612 3.6873 26.4795 22.5306 15.8566 7.1155 43.3191 0.69 0.70
2 0.7778 5.9596 5.0965 - 3.8824 17.3143 15.7309 12.6050 6.5645 31.6904 0.76 0.80
3 0.9340 8.0267 7.0998 5.7925 40.3067 36.8797 30.4323 8.8990 63.6120 0.82 0.83
4 0.9168 6.9508 5.9164 4.3821 22.9155 19.9114 14.6923 7.7612 42.8038 0.74 0.74
6 0.9671 5.4059 4.3770 2.9950 11.6665 10.1564 5.8080 6.3411 28.2543 068 0.57
12 0.6547 5.8501 4.6278 3.0314 17.0814 15.0341 11.3393 6.2788 28.8531 0.66 0.75

Table 4: Sample estimates of first, second, third order moments and cumufants for (1:1) with
a=083=04.y=02 e~N(01). n=500

s T Co C, Cas C(0.0) Css) | C@s2s) | M Ms a4, a,
1 1.0030 6.4023 5.6142 4.5275 11,6851 _10.7565 | £.3979 31.68591 081 0.78__|
2 0.9787 6.0585 52467 4.0445 132726 | 126520 10.4501 32.0278 077 08Y |
3 1.0577 7.8682 €.9813 5.6041 27.2553 25.2171 20.6763 53.5085 0.80 082 |
4 1.0331 7.3959 6.5226 5.3274 23.1467 21.4453 17,2442 4 47.1715 0.82 0.80
6 0.9431 7.2767 6.2535 47511 44.0951 39.1176 29.8999 8.1651 65,6217 0.76 0.76

12 0.9019 6.4099 5.4832 4.2813 19.1481 17.4401 14.2866 H 7.2234 37.2251 0.78 0.82
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We must note that when o = 0.8, 3. =04,y = 02, e~ (0,1). the theoretical momer’s 2= _ = * 6000, p, =
8.3750, p3 = 51.9260, R(0) =7.3750, R(s) = 6. 5000, R(2s) = 5.2000, u(0,0) = 28.8010, p(s.s) =25 9208, p(2s,2s) =
20.7926. Tables 3 and 4 show that a4 and o, given by (3.8) and (3.9) respectively, provide initia! estmates of a that
are close to the true/theoretical value. However, estimates for n = 500 ( Table 4) show that . = @, ~ «;

indicating thaxr with large samples, initial estimates of o can be used as the true values. It is also clear from Tables 3
and 4 that sample estimates of second order moments are closer to the true values than the sample estimates of third
order moments are to their theoretical equivalents. Based on these observations, initial estimates of the parameters
of (1.1) will be obtained using the first and second moments only.

Having determined s and initial estimate of o, we now consider how to obtain the initial estimates of f, y and
c“ using the first and second moments. Solving Equations (2.1), (2.6) and (2.7) and replacing theoretical moments
with_tireir sample equivalents, we obtain .

B (1 - & )m,
s _ _ i B (4.10)
1 + B + Myy” + 2apf + 2y) (l+a+[3)
i C, - aC, - (1-a)x° (4.11)
57
. (1-a)X
j = 4 (4.12)
52

Having obtained « , we adopt an iterative procedure called “Linearly convergent process* by Box and Jenkins {1976,
p202) to obtain initial estimates of B, v, and o”. We compute the estimates . B. 7 in this precfse order using the

iteration (4.10), (4.11) and (4.12). The parameters ﬁ and 7 are set equal to zero to start the iteration and the

values of 1&” ,B and y to be used in any subsequent calculatlon are the most up to date values available. For
example, usmg Table 3 fors = 12, we obtain « '

G = 066, & 354/(1+,3 +132/3+62872 +2175 413187 ). B = 0.62 57
= 0.22/ &’ . Table 5 shows how the |terat|on converged for s = 12 of Table 3. Using similar procedure, initial

estimates are obtained for various values of s considered for data’of Table 3 and the results-are shown in Table 7.
Our initial values are close to the true values, demonstrating the workability of outlined procedure for determination of
initial estimates.

Table 5: Convergence of initial estimates of o’ pandyfors =12

of data of Table 3.

Iteration 0_2 ,5 y
0 0.00 0.00
1 3:54 0.18 0.06
2 247 0.25 0.09
3 2.12 029 | 0.1
4 1.94 0.32 0.11
5 1.88 0.33 0.12
6 1.82 0.34 0.12
7 1.80 0.35 0.12
8 1.78 0.35 0.13
9 1.74 0.36 0.13

10 1,72 0.36 0.13
11 1.72 0.36 013

5. LEAST SQUARES ESTIMATES
Having determined s and the initial estimates of the paramerters including the residual variance, we con5|der
how to obtain the final estimates when we have a realization { Xy, Xz, ..., X, } of the time series X;, te Z. To obtain the
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Table 6: Convergence of final estimates of «, }, y and o° fors = 12 of Table 3
using the initial estimates @ = 0.66, B = 0.36.

= 1,72 of Table 5.

7 =0.13 and 6

iteration Parameters ey
k a ﬂ }/ (}3
0 0.6600 0.3600 01300 | 17200
1 0.6262 0.7438 02091 | 11154
2 1.3347 0.3880 0.2234 2 88’40
3 0.7836 0.2657 02441 | N
4 07723 | 0.4236 0.1990 N
5 0.7918 0.4254 0.1907
6 0.7893 0.4299 0.1872
7 0.7892 0.4302 0.1869 09859
8 0.7892 0.4302 01869 | 9._9_;1\_ G

Table 7: Initial estimates of «, 3, y and o? for the different values of s for data of

Table 3. )
Initial estimates ]

s @ F; 7
1 0.70 0.60 0.20 108
2 0.76 0.36 0.16 o
3 0.82 026 0.12 188
4 0.74 0.50 0.21 100
6 0.68 03 0.27 117 |
12 0.66 0.36 0.13 172

Table 8: Final estimates of «, f3, y and o’ for the d|fferent values of

s for data of Table 3.
Final estimates P
1 | 0.7809+0.0706 | 0.2746+0.0675 0.2466+0.0226 | 09383
2 | 0.7170+0.0789 | 0.4401:0.0329 0.1905+0.0067 [ 0.9630
| 3 | 0.7605+0.0947 | 0.4049+0.0475 0.1910:0.0168 | 09790 |
4 | 0.8010+0.0723 | 0.3307+0.0714 0.2254:00263 | 0.9707
6 | 0.7744+0.0886 | 0.3986+0.1270 0.2140+0.0577 :
12 | 0.7892+0.0796 | 0.4302+0 0820 0.1869+0.0257 ]

fmal estimates of the parameters, we proceed as in Subba Rao (1981), Gabr and Subba Rao (1981), lwueze ( 2004)
and apply the methods of least squares to minimize

with respect to the parameters @ = (0, =q, 6, =3, 05 = v )" When minimizing S(0) with respect to 8, the normal
cquations are nonlinear in 6. The solution of these equations require the use of nontinear algorithm such as Newton-
Raphson. The Newton-Raphson iterative procedure usually converge, but to obtain a good set of final estimates it is
necessary that we have a good set of initial values, of the parameters.
The problem of obtaining the initial estimates of the parameters was discussed in Section 3. Using the
MNawton-Raphson iterative procedure and the initial estimates tabulated in Table 7, we fit the model (1.1) to the sets of
data whose second and third moments are described in Tables 2 and 3. Table 8 gives the final estimates and the.
values in parenthesis below the parameter estimates are the associated standard errors. Adequacy of fit was based

an the randomness of the residuals by comparing the ac.f of the estimated residuals with + 2/ \/;[ Chatfield (1980) ).
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6. CONCLUDING REMARKS

- -We have derived the third order moments and cumulants of the model (1.1). Our results show that for (1.1),
the third order cumulant structure are similar to the covariance structure of zero values everywhere except at the
multiples of the seasonal lag s. Based on this similarity, we obtained initial estimates of the parameters using the
first and second moments. This method gave initial estimates that are close to the true values. The initial estimates
were then used in the Newton-Raphson iterative procedure to obtain the least squares estimates. These final
estimates were almost the same value as the true values proving that the entire procedure of finding the initial
estimates and achieving the final estimates are adequate.
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