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ABSTRACT 

The paper discuqses monolithic A-groups in CS, and gives the main results in Theorems A and 0. Theorem A puts 
forward the necessary and sufficient conditions for a group that is a split extension of an -abelian pgroup V, for m e  
pnme p, by a group H 20 be in CS,. V is considered as an irreducible kH module over k = IF, which is a splitting field 
for H. Thoerem T! considered a monolithic A-group with monolith W, which implies that W is elementary abelian p 
subgroup for sornc! pume p and G is a split extension of a homocyclic p-subgroup P by a p/-subgroup H. It states that 
G is a CS, group if and only if the subgroup GI, a split extension of W by H, is a CS, group. It further adds that if IFp is 
a splitting field fcr I-! tiren the condition for GI to be in CS, is given by .Theorem A. 

KEYWORDS: Monolithic A-group in CS,, p-groups. 

1. INTRODUCTION 

In our di5cilssi:n onCSi-Agroup of nilpotent length three (Makarfi, 1997b) the issue of monolithic groups in 
CS, came up. W6'. z::ia know that any class of finite groups that is S-, Q- and D- closed, Lemma (2.11) (Makarfi, 1991) 
contains exactly !!lose groups that are subdirect product of the monotithic ones. It is therefore very clear that any 
serious -investigation on CS, groups must be bas@ on good understanding of the monolithic ones. This underlines 
the motivation for the present discussions. 

We bring cur insin results on monolithic A-group in CS, in Theorems A and B on section 3? 

2. PRELIMINARY IKEBIJLTS 

In this sect:on we look at those results that will help us to get to the main results that we shall bring in Section 
3. We start with fhc f~llowing theorem. 

2.1. Theorem (Theorem A of Makarfi (1991). 

Suppose that F' is a p-group and H IS a group acting on P. Let G = P >a H be the semi-direct product of P by H 
then G is a CS,-grmp it and only if . 

(a) H is a CS,-group and. 

for every p' elernen; p of H of prime order, where C,(y) is the centralizer of y in P and (y) * is the subnormal d~osure of 
y in H. 

The following is a well known result.about subnormal subgroups which can be found in say chapter 13 of 
(Robirison, 1982). 

2.2. Lemma (2.2) 

Let { H ~ ' / ~ G A }  bc a family of subnormal subgroups of a group G such that for some integer n, S(G: Hi.) 5 n for 
all A. Then the inr~isection I of the H: is subnormal in G and S(G: I) 5 n. I n  particular the intersection of any finite 
number of subnorin~l si.~bgroups is again subnormal. 

A full proof for the following result is given here 

2.3 Lemma (2.3) 

-Let G be a group, H an abelian normal subgroup of G, V a kG-module. U a one (I)-dimensional kH- 
submodule of V with kernel A and y an element of G. Then 

=. 
U r UY I 
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as kH-modules if and only if 

i -0  
[HYl 5 A 

J ,- 
Proof 

3 c r t j :  

Recall that Y :  U, +'Uz is a Kh-module isomorphism if and only if 

1. Y is an isomorphism of vector spaces, and 

Now sllpgdse that [Hyj-5 A. [t is clear that Y(u) = uy IS a vector space isomorphism between U and Uy. So we on1 
need to-stlow that 

Y(uh) = V(u!h Vh E H 

But 

V{uh) = uhy = . ~ ( h " , ~ - ~ ]  yh = uyh since [h-', y-'1 EA 

Conversely, let 

Y: U .L, Uu be an H-isomorphism. 

We firsf show that 

e : u + u y  

is also an H-isomorphism. Now for a fixed nontrivial element u E U there exists a r~on trivial element h E k'such that 

hYJ(u) = UY 

This is because dimU = I = dim Uy. Since the map , 

x -+ h (vj)(x)), x E U 

is also an ti-isomorphism, we may assume that 

\II(U) = uy 

then 

' . ~ ( a u )  = ~ ( u )  = auy = (au)y V.Y E k 

SO 

y (u) = uy Vu E U 

~h&efore . . . . 

u -+ uy 

is an H-isomorphism. Thus 

e(uh) = €i(u)h 

Therefore " 

uhy = uyh Vh E H 
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~ [h - ' ,  y-'I = u 'dl, E H 

5 [H-YI I A 

c -5 zmoletes the proof. 
: f 

:,P refer to the next result as co-prime action. Its proof can be found say in (5.3.6) of Gorenstein (1980). 

- Lemma (2.4) 

-1: A be a pl-group o f  automorphisms of a p-group P, then 

.--- r-r a prime. 

25 The next theorem reduces the proof of Theorem 6 considerably 

Suppose that G is a monolithic A-group then we have the following .r 

a) The monolith W is an elementary abeliA p-group for some prime p. 

LO) The Fitting subgroup P is a homocyclic p-group. 

,c) G = PNH for some pl-subgroup H of G. 

- --,-c - - - Refer to section 4 of Makarfi (1997a). 

- .  THE MAIN RESULTS 

I ' Our first main result gives us some kind of hold on those monolithic A-groups that are in CS,. 

ie: H be a group and V a p-group which is an irreducible kH-module, where k = IFp is a splitting field'for H 
r -2  D IS a prime. Suppose that 

G = V N H  

s 23 A-group, then G is in CS, if and only if ttie folldwing.two conditions are satisfied 

H is in CS, and there exists 

L a K I H with KIL cyclic 

2-d an irreducible and faithful k[WL]-module U such that 

! L and K can be chosen such that L is subnormal.in H and for all pl-elements, x in H, of prime power order 

=roof. Let G be in CS, then we have to show (i) and .(ii). As for (i), let F = F(H) be the Fitting subgroup of H. We'first 
-ote that we can assume V to be faithful for H. Since if A is the kernel of the action of H on V and A.is non trivial then 
HIAI < /HI and GIA is in CS, by the Q-closure property. Also V A/A is an irreducible k[HIA]-module, so that we can. by 
nduction assume that 
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3 LIA a KIA 2 HIA 

satisfying (i). But then L a K 5 H also satisfies (i) 

So we can assume that V is faithful for ti. Now the restriction VIF of V to F decomposes into irreducible, kF- 
modules which are one (I)-dimensional, since F is abelian and k is a splitting field. We pick any of these one (I)- 
cimensional~modules, say u:. Ifthe restriction is homogeneous then 

and we see that each non trivial element of F acts as a scalar matrix on V. This matrix will commute with that of evet$ 
other element of H, since H is faithful on V. But then F will be central in H and so V =U1. Hence H = F and we can let 
K = F a n d L =  1. 

This means we can $ssume that the decompositlon of V Into irreducible F-modules to be non-homogeneous. 
, Wenex tMT bethe stabiliz4r of U1 in H. Now T < H and if W is the Wedderburn component of VF containing U1, then 

whT G 

is in CS,. So by induction on IG( we can assume that 

3 L a K 5 T with WL cyclic 

and anirreducible k[WLj-module U such that 

where'W is the Wedderburn component containing U1 in the decomposition of VIF. We also have 

v=wH . .~ 

We are here using Clifford's theorem (Clifford, 1937). Now because inducing is transitive we have 

V =  uH 
This completes the proof of (i). To show tha  (ii) also holds, we assume (i) and start by showing that L is subnormal in 
H. Note that since G is i n  CS, then for any p'-element x in H of prime power order, we have 

by (2.4) and (2'.1). Now because L centralizes U then for each x in L we have 

This means that every element Gf (x) . .~  centralizes u 6 1. Now for each y E L we have 

If on the other hand y E H and 

let y = k,t for some k1 E K and t an element of a transversal to K in H, then 

and we see that k, E L and t = 1. Thus 
- 

( u Q l ) y = u  0 1 o y ~ L  



MONOLITHICA-GROUPS IN CSn 3% 
Hence - \ 

As x runs through L we see that L is generated by these subnormal subgroups of H. Thus L is also subnormal in H, 
since it is generated by a finite number of subnormal subgroups by (2.2). 

It now remains to show that if x is a p'-element of H of prime power order then 

So we suppose that x is an element of H of order qa for some prime q # p and some integer a 2 1. We also suppose 
that 

The problem now is to show that x is in L. First of all x centralizes 

where 0 # u EU. Now since 

it follows that every element y in ( x ) . . ~  also centralizes v. Because 1, x, .. . , x"' is part of a4ransversal to K in H, we 
have 

o (u 8 I ) ~ X - '  = u @ 1 --- (**) for some i E {0,1, ..., n - 1) 

i.e. y = e,xifor some e, E L,(x),.~ 

Since both y and xi are elements of (x)..~. Thus 

M = (x)-~.= (L,, r) 

where L; = L ~ ( X ) . ~  This is because (**) is true for all y in ( x ) . . ~  

Next we let 

K =  H I O , , ( H ) ~ ~ ~ F = F ( H )  

then F ,  being the Fitiing subgroup of H ,  has no non trivial ql-elements since Oq.( H )  is trivial. Also it has tocontain 

all the q-elements, since it is its own centralizer in Hand H i s  an A-group. So the inverse image of in H is O,.(H)Q 
is some Sylow q-subgroup of H. Thus 

! 

Without loss of generality we can assume that x is in Q. Now it is clear that 

M 5 [Oq.(H), xl(x) 

because 

[OqW), XI (x) a ~ ~ I ( H ) V  . 

We use induction on IOq,(H)I to show that 

[Oq.(H), XI 5 M. 
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By co-prime action x leaves invariant some Sylow r-subgroup B of.Q,. (H), let R be some I/-subgroup of O,(H) such 
that O,.(H) = n, B). Now again by co-prime action 

d 

[B,x] = [B, x, . . . , x] - < [H, x, ..., x] 

< [H, M, ..., MI - 

< M 

where x and M appear s(H:M) times. 

By induction we assume that [R,x] I. M, so that 

[Oq.(H), XI = ([R, XI! [B. XI) 5 M. 

Therefore 

M = [Oqr(H), XI (x) = 0-1, x) 

Thus 

[O,.(H), XI 5 (L, x). 

~lso'for_all  y in [O,.(H), x] there exists xi by ("), sucbthat 

y ~ i  E L , 

i.e. yxi (o,.(H)Q) n L 

But Q fl L is a Sylow q-subgroup of L since L is subnormal in H. So 

o,, (H) n L = 0,. ,(L) = o,.L.(Q n L) 

= (o,.(H) n L x Q n  L) 

This gives us 

yxi E (Oq.(H) n L.(Q fl L). 

Therefore 

y ~ i  = uv 

for some u E O,.(H) n' L and v E Q fl L. But 
' , 

u- ly = vx-' E Qql (H)TTQ =.I 

thus y EL andwe get 

[0,1(~)~$1 5 L 

so that 

[o,I(F), XI I. L n F = L,. (a) 

Now Lois the kernel of F on U, and by (2.3) we have 

T = CH (F/Lo). (b) 

7 he raxt thing to observe is that equations (a) and (b) imply that x is in T because 

F = O,l(F)(Fn Q) 
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[FJ] = [OqdF), XI I Lo,  

We next note that 

and G is in CS, implies that 

W A T  .. . E CS, 

because CS, is S-closed. Thus by induction on IGI wecan conclude that x is in L, and hence in L. 

Con,;ersely, let 

We assume (i) and (ii) and show that G is a CS, grqup. From (i) we know that H is a CS, group. So by (2.1) it 
is enough to show that for any pi-element x in H of prime power order 

Now to show (c) it is enough, by co-prime action, to show that 

Cv(x) 5 Cv ((x)..~) 

fw any such x. We may assume that Cv (x) + 0 for othetwise (c) trivially holds. We know that 

and C, (x) = at Cvt (x) 

where t runs throug~~ Tx which is some transversal to (K, (x)) double cosets. 

Now U 8 t is a K' module with kernel L'. So if 

then x is fixed point free on Vt. To see this let 

and suppose that I 

where ui EU for 1 5 i 5 m. Then xm fixes v SO that 

Therefore 

uitxmfl = ui for 1 5 i 5 m. 
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Therefore 
.~., . -- .: . . . r; 

ui = 0 since txm f1 E K\L. 

If on the other hand 

(x) n K' = (x) n L' = (xn) 

then U C3 t is a trivial (x) fl Lt-m~dule and so x has a fixed point in V, since 

v = u @ t + ( u @ t ) x +  ... +(u@t)xn-l 

is fixed by x for any 0 + u EU. 

lt is then clear from the above discussion that for any x in H of prime power order 

for some t E T,. Thus 
?, 

o 2 CV' (x) = (x) n K' = (x) n L' 

3 xt*l EL by (ii) 

3 x EL' 

3 (x).lH E L', 

3 Cv, (x) 5 Cv ((x).,~). 

But 

Cv(x) = a3 Cv, (x) 

Hence 

3.2 We now come to  theorem B and the proof. 

Theorem B 

Let B be a monolithic A-group with konolith W, so that by Theorem.(2.5), W is element+ abelian p-grcrup for 
some prime p and 

ivhere P is a homocyclic p-group and H is a p'-subgroup. Then G is in CS, if and only 

is in CS,. If IFp is a splitting field for H then the condition for GI to be in CS, is given by theorem A. 

Pi-3of. If G is in CS, then G1 is in CS, by the S-closurl! property. Now W can be considered'as an IFpH-module and 
since W is the monolith we see that G1 satisfies the hypotheses of theorem A and is applicable. 

On the other hand if GI is in CS, we have to show that G is in CS,. But by (2.1) it is enough to showqthat for 
each element h in H of prime power order 



m 

MO~QC~~H~C-A'GR,OUPS IN,CSn 

Yow, G, is in CS, ~mplies that for each such element we have 

[W, (h)..H] n -Cw (h) = 1. (7 . - 
Z .  , 

But if . .. 
': <b- , - .47. . : 

[P; (h).H] n ~ p ( h )  t 1. . . .  , . ,  .,... 

then 

, . \  , . .  : 
. . . . , .. . 

since W = Q, (P). This means that 

. , .  

Therefore . . 

M 5 Cw (h). 

Also 

M 5 [P, (h)?] 
< 

and by co-prime action we have 

TClerefore 

M = [M, (h)..H] 

Lastly, M 5 W and so 

M = [M, (h)-H] 5 [ ~ ; - ( h ) -~ ]  

Using (**) we get 

1 z M 5 ~,(h). f l  p, (h).'H] 

contradicting (*). 

4. CONCLUDING REMARKS 
t 

The monolithic groups play a very crucial role in respect of any class of groups that is S-, Q- and D- dosed. 
Since CS, satisfies these three properties, theorem'A is very decisive for any discussion on A-groups in CS,. 

The theorem has given as a reasonable description of the cha%3eristics of the monolithic groups in CS,. We 
sllould for instance be able to tackle the question of the bounds on the nilpotent length of A-groups in CS,. The 
question on bounds on nilpotent length has two aspects. We may want to know whether there exists an integer n 
such that any A-group of nilpotent length greater than n can not be in CS,, in other words all A-groups in CSn must 
haGe nilpotent length less or equal to n. 

On the other hand we have seen in Makarfi (1997a, 2005) that CS, A-groups whose Sylow,subgroups are 
generated by elements of prime order are metabeli.an, i.e. they are of at most nilpotent length 2. This means that the 
~~!ernal  structure of the group may also affect the nilpotent length. 
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