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ABSTRACT .. e ,  .i 

A linear programming problem seeks for a non-negative column vector, x, that maximizes a linear objective function, 
uTx. subject to Ax 5 b, where A is a given matrix, and b and u are given column vectors. Using the same dpta, the dual 
problem to the primal seeks for a non-negative column vector, y, to min~mize a linear objective function, b y, subject to 

2 u. The surrogate methods exploit the Duality Theory to combine the two problems ~nto one'system of lrnear 
inequalities that treats the sign-restr~cied variables and the objective functions as constraints. Because the set of 
constraints in linear programming problems is sometimes a of inequality and equality constraints, this paper 
modifies the surrogate methods and comes up with hybrids of the ones designed for a system of linear ineq~.alitie$ 
and those for a system of linear equations. The paper also proves that a feas~ble solution to the resulting l~near 
inequality problem is made u j ~  of the primal and dual optimal solutions for the given primal problem and its associated 
dual. It goes further to prwe the dual theorem as it relates to the surrogate methods. 

. , 
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1. . INTRODUCTION - 

A linear programming, LP, problem is an opt~mization problem with a linear function, linear constraints and sign- 
restricted variables searching for an x E kn to 

maximize z = uTx 

subject to Ax 5 b ( I )  

and x 2 0 

given A E Rm xn, b E Rn and u E Rn, where u, x and b are column vectors (Hillier and Lieberman. 1974; Wagner, 
1975; Strang, 1976; Bradley, Hax and Magnanti, 1977). 

For every LP problem (I), there is another LP problem related to it'and which reverses the objqtivefunction and the 
direction of the functional constraints'by asking for a column vector, y . ~  Rm to : 

minimize z' = bTy 

subject to ~~y 2 u (2) 

and y r 0. 

Problem (1) is called the primal problem while the related problem (2) is known as the dual (Hillier and Lieberman, 
1974; Wagner, 1975; Strang, 1976; Bradley, Hax and Magnanti, 1977). But note that we have in no way said that the 
primal is always a maximization problem while the dual must be a minimization one. Because the dual of a'dual is the 
primal, whichever is the given problem to be.solved is taken as the primal and the related problem becomes the dual. 

Preliminaries 2. 
Exploiting the relevant aspects of the dualitytheory (Hillier and Lieberman, 1974; Wagner. 1975; Strang, 1976; 
B.radley, Hax and Magnanti, 1977), we can reformulate the primal-dual pair of an LP problem info orteyystem of linear 
inequalities, LI, so that like the simplex method, the surrogate methods can find x and y simultaneously. But unlike the 
simplex method, the objective function value is computed only after a solution to the combined system is found. The 
vital relationships utilized in the reformulation of the LP problem are summarized below as lemmas from ~i l l ie f  and 
Lieberman, 1974; Wagner, 1975; Strang, 1976; Bradley, Hax and Magnanti, 1977. 

Lemma 2.1 (Weak Duality Theorem) 

If (i) x is primal feasible; and (ii) y is dual feasible; then (iii) uTx 5 bTy 
..  p . 

Lemma 2.2 (Sufficient Optimality Criterion) 
If (i) xi is primal feasible; (ii) y' is dual feasible; and (iii) uTx' = bTy'; then (iv) x' is primal optimal and 

y' is dual optimal. 
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Lemma 2.3 (Unboundedness and Infeasibility Property) _-- 

i) , If 3x primal feasible and Yy dual feasible, then uTx = + -; 

ii) If ;9x primal feasible and 3y dual feasible, then uTx = - -; 

The converse of Lemma 2.2 is 

Lemma 2.4 (Strong Duality Theorem) 

If (i) x* is primal optimal; and (ii) y* is dual optimal; then (iii) uTx' =.bTy*. 

Lemma 2.4 is what all the texts on LP problem refer to as the dual theorem because it is the fundarnental theorem of 
the duality theory. However the proof is centered on the simplex method. Since the surrogate methods are primarily 
designed to get a feasible solution, Lemrna 2.2 is very crucial in adapting those methods for LP problems. The proofs 
of these lemmas can be found in any of the references given. However the proof of Lemma 2.4 will be presented later 
as part of Theorem 3.1 and as it relates to the surrogate methods. 

3. The Transformation 
Lemma 2.2 is a sufficient condition for optimality. Therefore in our search for the x and y.that satisfy the functional and 
sign constraints in (1) and (2), we must make sure that they also satisfy the equality uTx = bTy so that they are not only 
feasible but also optimal. However, 

T T T u x = b y <==> u x 5 bTy and uTx 2 bTy. 

By Lemma 2.1, once x and y are primal.and dual feasible, respectively, they automatically satisfytJe relationst~tp uTx 
4 bTy. Therefore to guarantee that equality is satisfied, all we need to do is to include the othei half of the pair of 
inequalities as 

-uTx + bTy 5 0. (3) 

With (A), (2) and (3) therefore, we can transform an LP problem into an LI problem that seeks for an x c Rn and a y 6 

Rm such that 

. . 

where 8' = '-ai I 11 ai 11 for i = I-, 2, . . ., n, rows of A; 

Bi = -Ui / 11 ai 11 for i = 1,2, . . ., n, rhs of the dual; 
T T T T (-u1,b') = (-u , b )-/. 11 (-u , b ) 11,  the normalized apimality row; 

and 11 v 11 is the norm of a vector, v. 

Recall (Oko, 1992) that the rows of A are assumed normalized or must be normalized before applying the surrogate 
methods. But this does not mean that its columns, which are the rows in the dual problem, are normalized too. In other 
words (Oko, 1992) .; 

11 ai 11 = I =I=> 11 ai 11 = 1. 
i ' T  

Therefore for correct application of the surrogatb methods, the columns of A, (i.e. the rows of A ~ )  and (-u , b ) must be 
ncrrmalized as defined in (4) for a', Oi and (u', b'). 
Let us denote the coefficient matrix in (4) by A', the variables by w-and the right-hand side by f. Then in our compact 
notation, (4) can be written as 

A'w s f. (5) 
\ 

\ 
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Theorem 3.1 

. Let w'"~ = (x '~)~; y'k)T) be the kt' iterate at which the surrogate algorithms ierminate riormally without aborting. Then we-- ;* 

claim that 

(i) x '~ )  is primal optimal; and (ii) y'" is dual optimal. 

Consequently, 

(iii) uTx'" = bTy(k) = the required optimal objective function value. 

Proofs of parts (i) and (ii) 

The original proof of convergence (Oko, 1992) and those i r i  two other papers (Oko, 2005a; Oko, 2005b) established a 

steady convergence to a feasible'solution. Therefore if the iterations terminate in a normal way without aborting, then 

(x"'~, y(4)T) is a feasible solution for (4). Now 

dk) feasible <==> A'w(~) < f and dk) 2 0 

<==> x is primal feasible, y dual feasible and u'x'~' - b ' ~ ' ~ '  2 0. 

But by Lemma 2.1, u'x(~) - b ' ~ ( ~ )  5 0. 

, (k) < 0 and, - 1 (k) > 0 <E> Urx(k) = ('I Therefore U ' X ( ~ )  - b y - , b y  - b y  

Wh xfi) primal feasible, y'k) dual feasiblp, and u'x'" b ' ~ ' ~ ) ,  then by Lemma 2.2 

(i) x '~ '  is primal optimal; and (ii) y'k' dual optimal. 

Proof of part (iii) 
It should be noted that what is computed during the search for a feasible solution f y  is not uTx'" andlor bTy"'per 
oc. but rather it is the arithmetic expression, ulx'*' - bly'*'. Therefore the value for u $ )or bTy'" has to be computed 
only after a normal termination has occurred for the algorithms. Let us assume that u ~ x ' ~ '  # bTy(k) at the time the 
iterations have terminated in a normal way without being aborted abnormally for inconsistency. 
Then by the definitions in (4), 

(k)T (k)T. <==> u'x(~) # b ' ~ ( ~ '  and (x , y ) is not a solution for (4). - .  .. . 

Bbt this contradicts not only the already proven first part of the theorem, but also the establ~shed proofs of 
convergence to a solution when the iterations terminate without aborting for inconsistency1 Therefore our assumption 
IS false and so Theorem 3.1 holds. 

4. Implementation 
A"is a (2m+2n+l) by (n+m) sparse matrix. It is made up of 10 blocks, 6 of which are zero and identity matrices. 
Likewise f is an (2m+2n+l)-vector with blocks of zero elements. The zero and identity matrices need not be stored. 
Since neither A' nor f is recomputed during the search f0r.a solution, storing them as they are will be most inefficient in 
space requirements and in computation time. Table 1 summarizes the actual space requirements. 

Table 1: Storage Requirements 
I Constraints I Augmented Matrw I Required No. Locations I 

I Dual I Ale I 2n(m+l) I 
I I 

( Variables 1 -1,,,10 1 0 I 

Primal . I Alb 2m(n+l) 
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In Table 1, we have multiplied each required number of locations by 2 because floating-point numbers, are bette; 
computed inuouble precision arithmetic to improve accuracy. 

Equality Constraints and Unrestricted Variables 
6% the theory of LP problems, the primal constraints are paired up with the dual variables, and the primalvariables 
with tb? dud constraints (Hillier and Lieberman, 1974; VJagi~rer, f975: Dradley, Pax and Magnanti, 191). If a primal. 
cot-rstraint is an inequality constraint, its associated dual variable is restricted in sign. But if it is an equality constraint, 
the associated dual variable has no sign restriction. Similarly, a sign-restricted primal variable gives rise to an 
associated dual inequality constraint, while an unrestricted primal variable results in a dual equality constraint. These 
correspondences are summarized in Table 2 beluw. 

Fcr convenience, it is advisable to arrange the constraints so that the primal inequality constraints are gr~uped 
together, preferably as the first set of m, constraints, say, such that 0 5 m, < m. Similarly, the first n, primal variables 
should be the sign-restricted ones such that 0 s n, S n. With a 5-type classification, we shall have 

I. Primal constraints as type 1 ; 
2. Dual constraints as typa 2; 
3. Primal sign restricti 9 variables as type 3; 
4. Dual sign restricted vzriable; as type 4; and 
5. The optimality constraint as type 5. 

This will facilitate handling of the problem without storing A' and f as they are. 

Table 2: Primal-Dual Correspondenccs 

7 Problem The Other Problcm I 
Rlaximization of ob~ective function I Minimization of objective function 

Coefficients of objective function 

fh cons!raint, a'x I bi 

fh constraint, a'x = bi 

j" variable, xj 2 0 

jm variable, xi unrestricted 

Inconsistency 

Unbounded function value 

Right-hand sides of constraints 

fh variable, yi 2 0 

fh variable, yi, is unrestricted 

jth constraint, (ailTY 2 u, 

jlh constraint, (ailTY = U, 

Unbounded function value 

Inconsistency 

5. 
The 
fcr L 

The Algorithms 4 

surrogate algorithms far solving LP problems are hybrids of those for solving LI problems (Oko, 1992) and those 
.E problems (Oko, 2005~). The essential definitions and formulae we used for our searches were 

I = { i I l 5 i S t n }  

d = Ax - b, the distances of x from the m hyperplanes, i.'e. the error in x 

c, = ~ ( a ~ ) ~ ,  i.e. cpi = a'.aP, the cosine of the angle between H, and Hi 

gi = (di - rcPi) 1 V'(I-(C~,)~) Vi E I and 1 -(cPi)' f 0 

r = the distance of x from the most violated half-space, H,. 

To accommodate the enlarged but sparse system, the following formulae listed below will be in use Note that just as 
the distance of the polnt x from the ith hyperplane 9f a functional constraint is defined as 

a'x - b, Vi, 

its distance from the fh hyperplane with respect to variable-constraint j is 

-e'x - 0 = -xi Vj where eJ is the jn row of the ident~ty matrix I,. 

? hese distances and the c: sine? f-3: the forrx'a for CJ, are summarized in Table 3. 
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Table 3: Formulae for Distances and Cosines - . - .  

With the above formulae, it is obvious that we will need no computations for a lot of the datalinformation'required 
sincesuch can be retrieved from other sources. 

'. 

-1, 

-In, 

( u ,  b )  

We shall modularize the algorithms into sub-algorithms for specific tasks. 
> 1.  

5.1 Surroga:e-1 for LP Problems 
The most violated half-space and the most violated manifold of two half-spaces are chosen. If there is no 
violated half-space, x is a solution. If the& is a violated half-space but no violated manifold, then the 
orthogonal projection of x onto the most Qiolated half-space is a solution. Otherwise that orthogonal projection 
replaces x and the process IS repeated with the new x. ,s 
Step 1. Call Initialize; 
Step 2. Call Choose1 (p, rk, T,); g = 0; 

Step 3. If rk I 6  then output uTx'"', x'~', y'k' and stop; else go to Step 4; 

Step 4. For Type 1 to 5; 

Step 4.1 Call Dotprd (c, Type, T,, .p); 

~onstra int  
Matrix 

A 

-x 

-Y 

-ulx + bry 

- I  

Step 4.2 Call Choose2 (rr, C, Type, s, g, T,, v); 

Step 5. Call Update (Tp, p, rk, g, k); 

Step 6. If g 5 6  then output u~x'~" ' ,  x'~"), Y'k+'' and stop; 

-(aP)T 0 ep 0 ull 

o -(aP)T o ep -bfl 

- ~ ' ( a ~ ) ~  b ' ( ~ " ) ~  u6 -bfp I 

else go to Step 2 with k = k + 1. . , 

. 

Distance 

Ax - b 

I 5.2 Surrogate-I1 for LP Problems 
The most violated half-space and the most violated manifold of two half-spaces are chosen. If there is no violated half- 
space, x is a solution. If there is a violated half-space but no violated manifold, then the orthogonal projection of x onto 
the most violated half-space is a solution. Otherwise the orthogonal projection of x onto the most violated manifold 
(not the most violated half-space as in 5.1) replaces x and the process is repeated with the new x. 

Steps 1 - 4 are.the same as those in section 5.1 above. 

Step 5: If g s 6 then go r6 Step 6; else go to ~ t e b  8; 

CosinelDot-product 

aP ap ' e -eP . , -$ (-"I,' bt) 
~ ( a ~ ) '  0 a - a ~  .O -AU" . 

Step 6. Call Update (Tp, p, rk, g, k); 

Step 7. Output uTx'""', x'~"', y'k+" and stop; 

n .  :? 

Step 8. p, = gld(1-v2); P, = rk - P,v; 

Step 9. Call Update (T,, p, P,, g, k); Call Update (T,, s, P,, g, k+l); 

Step 10. Go to Step 2 with k = k + 2. 

5.3 Algorithm for Surrogate-Ill 
3 1 s  is sim~lar to Surrogate-ll but 3 (not 2) most violated half-spaces are selected and the infeasible x is projected 
2.thogonally onto their manifold. 

Steps 1 - 8 are the same as those in 5.2; 

Step 9' .r,+, = d((r,J2 + g2); g = 0; 
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StepJ 0. For Type = 1 to 5; 

Step 10.1 Call Dotprd (c, Type, Tp, p); Call Dotprd (C, Type, Ts, s); 

Step 10.2 c = (P,c + PsC)1rk+,; Call Choose2 (rk+,, c, Type, t, g, Tt, v); 

Step 11. If g s 6 then go to Step 12; else go to Stepl4; 

Step 12. Call Update (Tp, p, P,, g, k); Call Update (Ts, s, P,, g, k+l); 

Step 13. Output U~X'"~), x(~+*), y(k+2) and stop; 

Step 14. A, = gld(1- v2); A, = Ps(l - Atv I T ~ + ~ ) ;  Ap = pp(l - Atv I rk+,); 

Step 75. Call Update (Tp, p, A,, g, k); Call Update (T,, s, A,, g, k+l); 

Step 16. Call Update.(T,, t, A,, g, k+2); 

Step 17. Go to Step 2 with k = k + 3. 

6.4 Algorithm for Surrogate-R 
R (2 s R sm) violated and distinct constraints are chosen for computation of a linear combination to serve as a 
surrogate constraint. The outward normal, ak, of the surrogate is then used to update x and the search for a 
solution continues. 
Step 1. Call Initialize; ko = 0; 

Step 2. Call Choose1 (p, rk, Tp); 
'T (kO) ,((kO) (kO) Step 3: If rk 5 6 then output u x , , y and stop; else go to Step 4; - 

Step4. P={p ,Tp) ;q=l ; i ik=O;g=O;  

Step 5.  If Tp = 1 then for j = 1 to n; 8kj = apj; 

elseif Tp = 2 then for j = 1 to m; dk,,,+j = Bpi;  
T elseif Tp = 3 then iikp = -1 ; elseif Tp = 4 then = -1 ; else ilk'= (-u',b ); 

Step 6. For Type = 1 to 5; 

Step 6.1 Call Dotprd (c, Type, 6, k); 

Step 6.2 Cali Choose2 (rk, c ,  Type, s, g, Ts, v); 

Step 7. If g 5 6 or {s, c) c P then go tostep 12; else go to Step 8; 

Steps. P=Pu{s,TS);  q=q+ l ;  P , = ~ . / ~ ( I - v ' ) ;  P k = r k '  Psv; 

Step 9. = d((rk)2 + (g)i); 
. . 

, Step 10. If ' Ts = 1 then For j = 1 to n; . dr+1 = ( P ~ B ~ + + ~ ~ ~ ~ )  1 rk+l; -. 
elseif Ts = 2 then For j = 1 to m; = (Pkgk.,+, + I rk+l; 

elseif Ts = 3 then For j = 1 to n; ,i = ( P k A k j  - Pses,j) 1 rk+l; 

elseif Ts = 4 then For j = 1 to rn; = (PkAk,,,+j - Pses,) I rk+l; 

else = (PkAk:+ Ps(-u', bT)) I rl;+~; 

Step 11. g = 0; Go to Step 6 with k = k + 1; - 
(kO+q)T (kO+q)T ( W T  (kO)T) - ,.&; Step 12. (x , y  ) = ( x  , y  

Step 13. If g 5 6 then output U T X ( ~ ' ) + ~ ,  x('O*~) , y ( ' O q )  and stop; else go to Step 14; 

n 
Step 14. -  or i = 1 to m; di = + . r r~a , j i k J ;  

J= I 



Step-1 5. For i = 1 to n; di = di - rk 5ii,ifik,n+j; 4 J= 

Step 17. Go to' Step 2 with k = k+ 1 and ko = ko + q. 

5.5 Subalgorithm Initialize; 

Thls subalgorithm reads in the given parameters and uses them to initialize the remaining working dqte 

Step 1. Input m, n, mi, nl, A, b, u, 6; 

Step 2. A = - A ~ ;  d = b d = -u; U' = U; 

Step 3. Normalize the rows ~f AJd, Aid and (-u', bT); I,* b is now used for b' *I 

Step 4. x"' = 0; y'O' = 0; k = 0; I' Zero for x & y is a convenient arb. choice. ' I  

Step 5. d = -d; d = -6; d, = 0; I* Dist. of x & y from pri, dua. & opt. W-spaces ' I  

Step 6. Return. 

5.6 Subalgorithm Choose? (p, r, T); 

Choose p such that Hp is the most violated of all the half-spaces. 

Step 1. r = d,; T = 5; I' Choose the optimality constraint *I 

Step 2. For i = 1 to ml; I* Choose from primal constraints or dual variables '1 

Step 2.1 If r < d, then r = di; p = i; T = I ;  

Step 2.2 If r < -yi then r = -yi; p = i; T = 4; 

Step3. For i=ml+l  tom; 

I f r <  IdiI thenr< ~ d i l ; ~ = i ; ~ = l ;  

Step 4. For i = 1 to nl; I* Choose from dual constraints or primal variables * I  

Step 4.1 If r < di then r = di; ,p  = i; T = 2; 

Step 4.2 If r < -xi then r = 'xi; p = i; T = 3; 

Step5. Fori .=nl+l ton; 

I f r <  IdiI thenr= I d ; I ; p = i ; T = 2 ;  

Step '6. Retu'm. 

5 7  subalgorithm Dotprd (c, T,, T,, k); 
The dot products of all the outward normals in T2 with that of the most violated half-space k in Ti ere tor,-~puted usrng 
a computed-go-to statement to select the required section. Type 6 is the constructed surrogate ccnstraint for 
Surrogate-R. 

Step 1. c=O; 

Step 2. Go to (3, 5, 7,9, 1 I), Tz; 

step 3. If TI  = 1 then c = A(aklT; elseif TI = 3 then c = a t ;  
n 

elseif TI  = 5 then c = -AutT; elseif TI  = 6 then For i = I to m; Ci = V i j A k j ;  
j= 

Step 4. Return; 
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Step'L If TI = 2 then c = A(lik)T; ebeif TI = 4 ther, c = -sk; 

m 
elseif TI = 5 then c = Ab; elseif TI = 6 th8:n'For i = 1 to n; ci = z8ijlk,n+j; 

J= I 

Step 6. ~ e t u k ;  

Step 7. If TI = 1 then c = -(ak)T; elseif TI = 3 then c = ek; 

elseif TI = 5, then c = ulT; elseif TI = 6 then For i = 1 to n; Ci = -&i; 

Step 8. Return; 
-k T. Step 9. If TI = 2 then c = -(a ) , elseif TI = 4 then c = ek; 

elseif TI = 5 then c = -5; elseif TI = 6 then For i = 1 to m; Ci = -ik,,+i; 

Step 10. Return; 

Step 1 1. If TI = 1 then cl = - ~ ' ( a ~ ) ~ ;  elseif TI = 2 then cl = b.gk; 

eiseif TI = 3 then cl = ulk; elseif Tl = 4 then cl = -bk; 

elseif T1 = 5 then cl = 1 ; else cl = (-u', bT)-&; 

Step 12. Return. 

5.8 Subalgorithm Choose2 (r, c, Type, s, g, T,, v); 
The algorithm chooses Hs (or H,) such that dH,naHs (or dH,naH,dH,) is the most violated manifold of 2 (or 3) 
half-spaces. 
Step 1. If Type = 1 then q = m; q~ = ml; f = d; 

elseif Type = 2 then q = n; ql = nl; f = d; 

e l s & f ~ y ~ e = 4 ' t h e n ~ =  ml;ql  =ml ;  f=-y; .else q.= 1; ql = 1; fi =d,; 

step 2. If c = dthen go'to Step 4; else go to Step 3; 

Step.3. For i = 1' to q; 
+ 

-. Step3.1 fi=fj-rci; 

Step 3.2 If l-(ci)' # 0 then f j  = f j  I .\l(l-(~~)'); 

' Step 3.3 If l-(ci)' = 0 L'((i 5 qt & f,'> 0) or (i > ql & f, # 0)) then abort; else continue; 

Step 4. For i ,=  . . 1 to q;-a 

If i ~ q ~ & g ~ f , t h e n g = l ' i ; s = i ; ~ = ~ ~ ~ e ; v = c , ;  

elseif i > ql & g < I f, 1 then g = I f ,  I ; s = i; T = Type; v = c,; 

Step 5. Return. 

5.9 Subalgorithm Update (T, p, r, g, lo; 
Th~s algorithm updates x and y w ~ l h  the outward normal of the chosen half-space. If a solution is not yet found, 
d is also updated. 
Step I. If T = 1 then = x'~' - r(aPIT; elseif T = 2 then y(k") = y(k) - r(l i~)~; 

A 

elseif T = 3 then = x(k)+ r(ep)T; elseif T= 4 then $k+I) = $k) + r(e~)T; 
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5:epJ. If g 5 6 then return; else go to Step 3; / 

Step 3. If T = 1 then d = d -  ~ A ( B P ) ~ ;  elseikf = 2 then d = d - ~ A ( B ~ ) ~ ;  

elseif T = 5 then d, = d, - r; 
Step 4. Return. 

I Conclusion 

-Y m modifies the surrogate methods and comes up with hybrids of the ones designed for a system of linear 
3 e ~  and those for linear equations. It is also shown that a feasible solution'to the resulting linear inequality - 5- IS made up of the primal and dual optimal solutions for the given primal problem and its associated dual. The 

I.-? I - ~ r e m  as it relates to the surrogate methods is proved. The surlogate algorithms for LP problems are given. 
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