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ABSTRACT

Tau method is an economized polynomial technique for solving ordinary differential equations with smooth
solutions. The tau method is modified in this paper for easy computation, accuracy and speed. The maodification is
based on a systematic use of ‘Catalan Polynomials’ in collocation tau method to approximate the solution of ordinary
. differential equations. The method involves direct use of ‘Catalan polynomials’ in the solution of ordinary differential
_equations without first rewriting them in terms of other known functions as commonly practiced riow. The results

obtained are quite comparable with the standard collocation tau methods.
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1.0 INTRODUCTION

The Lanczos tau method (Lanczos, 1938) found an extensive use in the construction of mathematical and
machine tables in the 1950's; see Lanczos (1952) and Clenshaw (1962). The method requires that the coefficients
and the right hand side of the differential equation be polynomials. This restriction is removed by the method of
selected points (Lanczos, 1956), but the choice of Chebyshev perturbation term is lost in this method. Okunuga and
Onumanyi (1986) retained the use of Chebyshev perturbation term and even extended their work to the solution of
ordinary differential equations (odes) with non-polynomial coefficients.

In this work, we shall follow the approach of Okunuga and Onumanyi (1986) but using as the perturbation
term what we call ‘Catalan Polynomials’. Also, instead of the use of multiple choice of perturbation terms meant to
overcome the problem of over-determination in the resulting algebraic system of equations encountered in collocation
tau method (Okunuga and Onumanyi, 1986), one perturbation term is involved in the approach employed here. This
leads to an algebraic equation in which the number of unknowns is the same as the number of equations resultmg in
the unique determination of the unknown terms.

2.0 COLLOCATION TAU METHOD

Let y(x) be an unknown function that satisfies a given differential equation ‘
Ly(x) = po(X) +p,(¥)y(x) + ...+ p,(x)y*'(x) = f(x), a<x<b (2.1)

where y‘®(x) stands for the derivative of order & of y(x) and the coefficients p ,(x), j=0,1,...,s are not
necessarily polynomials (Lanczos, 1956). We approxumate the solution of (2.1) by a power series of the form
y(x)=y(x)=a, +a,x+..+ax' —Zax (2.2)
n=0
so that (2.1) becomes _
Po(X) + Py (X)Y.(X) +...+ P, (X)Y,"(x) = f(X) +H(x), a<x<b (2.3)
where H,(x) is the residual. N ’

For polynomial coefficients, p,(x), j=0,1,2,...,s, the residual H, (x) is a polynomial that is replaced by a
finite sum of Chebyshev polynomials (Lanczos, 1938) involving some free tau parameters. If p /(x) are non
polynomials, Lanczos (1966) used

H,(x)= Zr T, (%) | ' (24)
where 7, (x) is the Chebyshev polynomial of degree k defined in the interval -1 < x <1, 7,,7,,...,7, are constants
to be determined. Substitute (2.4) in (2.3) and then collocate the resulting equation at x =z, ,r = 12,...,i s+1 where

z, arethe i~s+1 zeroesof 7, -1<x<t to obtain

~s+1
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“Inthe general intervala < x < b, (2.4) can be written as (Odekunle 1993)

Hix) = 21, T gulx) | (2.6)
g=1 ‘

where T;(x) is the shifted Chebyshev polynomial of degree k defined in the interval ¢ < x < b, a and b are real
numbers. Substitute (2.6) in (2.3) and collocate the resuiting equation at

b-a

i+1

where h is the desired step-length. Hence,

x =jh, |=1,2,.i+1, h=

po(x])y,(x’)+...+ps(xl)y“’(x)—f(x)+rT (x)+rzT,,(x)+ +'ch en(X)) (2.7)

3.0 CATALAN POLYNOMIALS

Among the known mathematical constants, Catalan constants are one of those studied extensively. It first
appeared in the estimation of combinatorial functions as (Parker, 1984} .
k
@ —1
¢oF e
k=0(2k + ])
It is not known if C is irrational (Sloane, A006752/M4593).
The previous use of Catalan constants in differential equations involve first rewriting it in other forms such as Dirichlet
beta function, Legendre chi-function, Hurwitz zeta function, polygamma function etc (Weisstein, 1899) and Riemann’s

zeta function (Srivastava and Miller, 1990). In this work, attempt is- made to apply the constants directly in solving .. -

differential equations without necessarily first writing them in terms of any other function.

Definition 1
A series of numbers given by the equation

] 2n
C,=— . on=0.12,., ‘ (3.1)
n H ’ ' o o v
H ’7'
where = onom = 0,12,
” m'(n - m)’

is known as Catalan numbers.
From this definition,
C,=1C =1C,=2C,=5C,=14,C, =42,C, =132,... (3.2)

P

Definition 2
We define Catalan polynomial C(x) as

I : 4 ‘A: - ‘. . . ,3\4\:.3 i
Cx) = Z[ T T, =002 S
where ()= L jk-o0t2.000 )
KGR e

4.0 MAIN TOOL

Let the residual // (x) be defined as
H (x)=1C (x) , ‘ 4.1)
where (' (v} 1s the Catalan polynomial of order |
Substitute (4.1) in (2.3) and collocate the resulting equation at
—ih §=1.2,.041, h=272 42)

to obtain
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PolX,) + P X )y (x )+ ...+ p(x )y, " (x ) = f(x )} + 1C (x)) 743
Solving equation (4.3) subject to the given initial or boundary conditions will result in (i+2) system of equations in (i+2)
unknowns a,.q,,...,a,and 7 that can now be determined uniquely. :

5.0 NUMERICAL EXAMPLES

For our numerical experiment, we shall make use of common problems used by previous authors
(Okunuga and Onumanyi, 1986; Taiwo and Onumanyi, 1990 and Omolehin, 1997) so that the performance of
this technique compared with theirs can easily be numerically assessed.

3

Example 1:  y'(x)-x'y(x)=0, 0<x<1, y0)=1, y . (x)=¢g" (5.1)
We assume an approximate power series solution of the form:
y,(x) = Za,x’ (5.2a)
1=0
so that
yi(x)= Zja_lx"' ’ (5.20)
1=0
Equation (5.2a) is then substituted in the slightly perturbed form of equation (5.1) to obtain
Yi(x) = x*y,(x) = 2C, (x) (5.3)
If i =35 then, (This shall apply to all the problems considered.) from (3.3)
Cix)=l+x+ 2x? +5x° +14x" +42x° (5.4)

‘Substitute (5.2) in (5.3) to obtain
(@, +2a,x + 3a,x* +4a,x’ +5a,x*) - x*(a, + ax + a,x’ +ax +axt +ax’)

(5.5)
=t(1+x+2x7 +5x7 + 14x* +42x%)
At x =0, y,(0) =1 sothatfrom(5.2a),
a, =1 ‘ (5.6)
From (4.2), the collocation points are
x=to b 44 (5.7

Collocating (5.5) at the points in (5.7) couple with equations (5.6) we obtain the following system of equations

Ax=b
where
(215 431 647 863 1079 _ 545 ]
216 1296 7776 46656 279936 432
26 33 8 107 14 - 169
27 8 243 729 2187 81
I B 23 3 39 -n
A=| ¢ 16 32 64 128 16
%2 292 800 2032 =37
27 81 243 729 2187 3
91 1535 13075 92375 596875 _ 3855]
216 1296 7776 46656 279936 1296
0 1 2 3 4 -65

_ & 1t & 4 25
x-[a,, 4y, a;, 4, dg, r] and b= [EZ’ 50 30 90 36 ]]/

which can be solved using Gaussian elimination for the 6 unknowns. The dimension of A is determined by the degree
of Catalan polynomial used. These obtained values of a, are substituted in (5.2a) to obtain the required approximate
solution. The error is defined as

Error =y, ..~ Y,

_ and are shown for example 1 in table 1, column 2.

(5.8)

Example 2: y'(x)-y(x)=x, 0<x<1, y(0)=0, y_ . (x)=¢€ -1-x
The calculation is carried out as in example 1 above. The errors are shown in table 1, column 4..
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Example 3: 21+X)y'+y =0, 0<x<1, Y(0)=1, Yo =
Again, we follow the calculations as in example 1. The errors are shown in table 2, column 2.

Exampled: y (x)-y(x)=0, 0 <x <1, y0)=1, y(1)=3, y,.(x)= g (5.9)
We assume using (5.2a) an approximate power series solution of the form:

(@) =Yax
J=0

so that -
v = Yiax, v =D ii-tax ' (5.10)
=0 =0
Equation (5.2a) is then substituted in the slightly perturbed form of equation (5.9) to obtain
Yi(%) = y,(x) = 7C,(x) . | (5.11)

Substitute (5.2a) and (5.10) in (5.11) to obtain
(2a, + 6ax +12a,x* +20a,x’) - (a, + a,x + a,x* + a.x* + a,x* + a,x*) 5.12)
=7(1+x+2x? +5x° + 14x* + 42x°) '
At x=0, y,(0)=1 sothatfrom (5.2a),
a, =1 . : (5.13a)
At x=1, y,(1)=3 so that from (5.2a), ’
a,+a,+a,+a,+a,+a; =3

. Thatis,
a+a,+a,+a,+a;=2 (5:13b)
since a, =1. ’ ’
Collocating (5.12) at the points in (5.7) together with equations (5.13) we obtain the following system of equations
Ax=b
where

1 1 1 o 0
~1296 15336 7740 2586 719  —7776
-2592 14688 15264 10272 5728 —16224
-3888 13608 22356 22842 19197 -—37422
~5184 12096 28800 39936 45056 —95904
| -6480 10152 34380 61050 86875 -231306 |
X= [a,, a,, a,, a,, as, 7| and b=[2, 7776, 7776, 7776, 7776, 7776}'

which can be solved using Gaussian elimination for the 6 unknowns. These values of a, are substituted in (5.2a) to
obtain the required approximate solution. The values of the errors for different values of x are shown in table 5.4.

k ' . XZ
Example 5. »"(x) - 2(1+2x*)p(x)=0, 0<x <1, y(0)=1, y(0)=0 y, .(x)=¢
In this case, equation (5.5) becomes
(2a, +6a,x +12a,x* +20a,x’) - 2(1 + 2x*)(a, + a,;x + a,x* + a,x’ +a,x* + a,x’)
=7(1+x+2x> +5x° + 14x* + 42x%) ‘
Following the steps in the solution of example 1, we obtain the results for the errors as shown in table 2, column 4.

(5.14)

6.0 PRESENTATION OF RESULTS

Omolehin (1997) claimed that his method not only compared favorably with other collocation methods (e.g.
Okunuga and Onumanyi, 1986, Taiwo and anmanyl 1990, Lanczos, 1956), it is even more powerful than any other
method therefore, it will be reasonable to ¢6mpare our result with his. In arriving at these reported results, we have
subjected the two methods to “rough numerical procedures For examples, single precision and low degree
polynomials (in this case 5) were used.
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Table 1: The errors as defined by

(5.8) for examples 1 and 2.

Example 1 Example 2
X 1 y(x)-x*y(x)=0 y (X - y(x) = X
New Method Omolehin (1997) New Method Omolehin (1997)
0.0 | 0.000000E-00 0.000000E-00 0.000000E-00 0.000000E-00
0.1 | 6.395450E-04 2.547870E-03 2.054500E-05 1.006480E-04
0.2 | 1.400241E-03 5.501073E-03 4.654200E-05 2.265260E-04
0.3 | 2.379263E-03 9.085706E-03 8.174600E-05 3.887540E-04
04 | 3.820331E-03 1.372529E-02 1.342920E-04 6.053390E-04
0.5 | 6.216569E-03 2.013859E-02 2.202550E-04 9.065070E-04
0.6 | 1.046565E-02 2.948974E-02 3.685560E-04 1.337930E-03
0.7 | 1.809325E-02 4.360661E-02 6.273670E-04 1.970044E-03
08 | 3.157353E-02 6.529626E-02 1.072162E-03 2.905566E-03
0.9 | 5479488E-02 9.880582E-02 1.815605E-03 4.290231E-03
1.0 [ 9.375282E-02 1.505097E-01 3.019448E-03 6.325306E-03
Table 2: The errors as defined by (5.8) for examples 3 and 4.
Example 13 Example 4
X 1 20+xly +y=0 y (x)- 201+ 2x*)yix) = 0 ’
New Method Omolehin (1997) New Method Omolehin (1997) . |¢
0.0 | 0.000000000E-00 0.000000000E-00 0.000000E-00 0.000000E-00
0.1 | 4.595393000E-03 4.432293000E-02 5.052300E-04 1.862501E-03
0.2 | 9.278979400E-03 8.429822250E-02 2.170922E-03 7.848537E-03
0.3 | 1.463548800E-02 1.228968966E-01 5.309428E-03 1.881729E-02
0.4 | 2.380051370E-02 1.162682975E-01 1.051579E-02 3.618571E-02
0.5 | 3.279740030E-02 2.059117318E-01 1.901425E-02 6.232871E-02
.| 0.6 | 5.090588630E-02 2.545961909€E-01 30321964E-02 1.011944E-01
0.7 | 8.105018170E-02 3.105541711E-01 5.760021E-02 1.692223E-01
0.8 | 1.301993363E-01 - 3.754430638E-01 9.999662E-02 2.467071E-01
0.9 | 2.077756467E-01 4.507865548E-01 1.735800E-01 3.798287E-01
1.0 ['3.260684430E-01 5.379959790E-01 2.998707E-01 5.837067E-01
Table 3: The errors as defined by (5.8) for example 5.
Example 5
X y'(x)-y(x)=0
.| New Method Omolehin (1997)
0.0 0.00000E-00 0.00000E-00
0.1 1.40860E-04 3.13123E-04
0.2 2.78891E-04 5.98206E-04
0.3 4.11885E-04 8.53161E-04
0.4 5.36841E-04 _ 1.07200E-03
0.5 6.47882E-04 1.24294E-03
0.6 7.32695E-04 1.34506E-03
0.7 7.67428E-04 1.34339E-03
038 7.09747E-04 1.18217E-03
0.9 4.89977E-04 7.76220E-04
1.0 1.00000E-09 1.00000E-09
SUMMARY AND CONCLUSION

! From the results obtained as shown in tables 1-3, the new coliocation approach compared favorably with
Omolehin (1997)and hence with any other collocation methods (Omolehin, 1997). The use of multiple 7 is eliminated
(Lanczos, 1956) making the calculation faster due to reduction in the size of the matrix system to be snived. This gives
our approach an edge over these other previous methods just like Omolehin's method with the same computational
effort as his. The choice of Catalan polynomials as our perturbation polynomials is very economical because it is very
easy to compute when compared with the computations of shifted Chebychev polynomials used in most of these
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previously (Okunuga and Onumanyi, 1986; Taiwo and Onumanyi, 1990) mentioned methods. The fast rate of Catalan
constants (Sloane, A006752/M4593; Weisstein, 1999) is made use of here to give us an edge over Omolehin’s work.
i This is an attempt to introduce the use of Catalan polynomials into the numerical solution of differential
equations directly and the result is ver ancouraging.

As expected, it is worth mentiuning that the method does not behave so well with stiff problems.
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