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ABSTRACT

This paper investigates the effect of cooling on the onset of thermosolutal instability in a horizontal fluid layer
filled with binary fluid with first-order chemical reaction in a porous medium. The cooling is taken to be of Newton’s
type; while the linear stability analysis is employed to determine the onset of the buoyancy-driven convective motion. It
is seen that the effect of cooling cannot be ignored both for the static temperature and on the propagation of the
disturbances in the system. In addition, cooling delayed the onset of instability and higher values led to greater
stabilization; while the presence of chemical reaction led to destabilization of the system.
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1. INTRODUCTION

Combined natural heat and mass transfer, the so-called double-diffusive or thermosolutal convection, where
the flows are induced by both temperature and solute fields has received considerable attention due to its important
applications in diverse fields such as in the dispersal of chemical contaminants through water saturated soil, the
exploitation of continental geothermal reservoir, metallurgy, geophysics, enhanced oil recovery, and packed-bed
catalytic reactors, food processing and the migration of moisture in fibrous insulation, (Bahloul et. al (2003); Hill
(2005)). Also, it is likely to prove essential in the understanding of some areas of stellar convection (Huppert (1977)).
Thermosolutal convection owes its existence to the presence of two components of different molecular diffusivities
which contribute in an opposing sense to the locally vertical density gradient. That is, thermosolutal convection is due
to density variations which are induced by both temperature and concentration gradients where the heat and solute
concentratlon are transported by convection and diffusion (Bahloul et. al., (2003)).

Early investigations on double-diffusive natural convection in porous media focused on the problem of
convective instability analysis in a horizontal layer. For example Nield (1968); Taslim and Narusawa (1986); Brand
and Steinberg (1983); Malashtly (1994) used linear stability analysis to determine the criteria for the onset of
thermohaline convection for various conditions; while Rudraiah et. al. (1982a, b) investigated the region of instability
via salt — finger and diffusive regimes in a porous layer for thermohaline convection. More recently, Lombardo ef. al.
(2001) studied linear and non — linear stability of a Bernard problem for double - diffusive mixture in a fluid - saturated
porous medium using the direct method of Lyapunov.

However, in all these studies the effects of cooling and chemical reaction have been ignored. In systems in
which the specie concentration dissociates with attendant heat generation, cooling effect becomes significant. The aim
of this paper therefore, is to investigate the effect of cooling on the onset of thermosolutal instability in a horizontal
fluid layer filled with binary fluid with first-order chemical reaction in a porous medium using linear stability analysis
technique.

2 MATHEMATICAL FORMULATION

We consider a horizontal double-diffusive fluid layer of height d > Oin a porous medium heated from belfow and
-d d

confined between two parallel surfaces located at z' = > and z' = 5 The schematic diagram of the physical

model and coordinate system is shown in Fig. 1. Initially the fluid is at rest when the lower surface is maintained at

AT . Ac . .
temperature 7, =7,+—— and concentrationc, =c, + 7 ; while the upper surface is at. temperature

(T +T) (c,+c2)

T, = T —ézl and concentration cz-co—%q Here T, = 5 COZT’ T,>T,, ¢, >c,.
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Fig. 1. Schematic diagram of the physical model and Coordinate system

The\ porous medium is assumed to compose of sparse distributed particles, while the binary fluid is assumed to be
incompressible and to satisfy the Boussinesq approximation. The density variation and concentration is described by
(Lombardo et. al. (2001); Lawson and Yang (1973))

p=po1- Br(T"=Ty) + B.(C" - ()] M
where 0, is the density of the fluid mixture at temperature 7" - 7, and mass fraction (' - (, and /4, and f3, are

the thermal and concentration expansion coefficients, respectively. The subscript "0" refers to conditior at the origin of

the coordinate system.
The governing equations of the motion for the flow of a binary mixture through a porous medium under the

usual Boussinesq approximation taking into account the effects of cooling and first-order chemical reaction are
(Chhuon and Caltagirone (1979); Phillips (1991))

Viev =( (2)

! [ . iyt g g ' PR ' TR
év—' +(VoVIW =« VP o3 (T" Tk + gf3.(C"=Cp)k -~ Yviwy (3)
a’ A0 / k
L?L +(v'eV)T' = y’(&‘v'lr' A (r'-T,) : 4)
M ot (p()cp)y (/)()(‘p)t .

oc’ . . '
¢%%+(V0VUCU:DVQ("»62«”—(b) (5)

t
where V' is the velocity vector, /' the pressure, g Is the acceleration due to gravity, v = H iz the kinematic

/)(b

viscosity, k& the thermal diffusivity, D the diffusion coefficient, p, the density, ¢, is the specific heet capacity of the

fluid, k:z is the reaction coefficient and }/2 is the cooling coefficient. Also, the parameter ¢ is the normalized porosity

defined by ‘ .
i ‘ ¢ =o¢'M : . (6)
where ¢'is the porosity and M is the ratio of the heat capacities defined by

— (p()c/))L : ) (7)

(p()cp ”

In Eq. (7) the subscripts “f' and “m" refer to the fluid and medium respectively.
The boundary conditions are (Lombardo et. al. (2001))
- ., —~d
w=0T=0HC=¢ at = 5
(8)
g t = = .(,1
¢y at z = 3

<

1

w =01 =Ty, ("’
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The non- dlmenswnal equations representing the flow are governed by

VeV =0 (9)
%uv. V)V = —VP-M—{R T - RO - 2V + V2V (10)
Pr[o%wL(VoV)TJ =V -B)r (11)
t .
Sc[;ﬁ%qu(VOV)Cj = (V2 —RZ)C (12) -
t .

subject to the conditions

] ] 1
W=0,T=4—-,C=%—- at z=F- (13)
2 2 ‘ 2
where we have used in Egs.(9-13) the foliowing non-dimensional variables and parameters

";,v—iv V=dv, (xy,z)———-(x vy T=L T C=C
d I -1, ¢ -

2 2,2 3 2

Pr:l/—,a: K 'Rz dk Bz_d}’ SC—— p- dzp,’ZZ:i

@ (pocp)j D K D PV
‘ ; B
R =8AAL-N) oo _ghlea) (1a)
av av M

Here, R, is the thermal Rayleigh number and R,. the solutal Rayleigh number.

3.4 . Basic Flow
-

& ' .
The basic state of the system is given by the static solution V = 0 and . 2 0 of the governing equations (9)-(12)
o

subject to boundary conditions (13) to which corresponds the static temperature, 7, ; static concentration, ', and

static pressure P, given respectively by

(D*-B)r, =0 (15)

(D*-R?)c, =0 (16)

DF; = "]—(Rr‘Tx - R('Cs) (17)
Pr

d
where D = — . Equations (15) — (17) are to be solved subject to the conditions
2

] ] ]
T:_~|C‘,:t— tz=%F— 18
VTR TR a 2 18
Solving equations (15) - (17) using boundary conditions (18) yield v
1 Sinh(Bz)
L= . (19)
‘ 2 Sinh(R/2)
1 Sinh(Rz
= o) » (20)
2 Smh(R/Z)
P ~-~P - J(RT, - R C e : 21)

3.2 Effect of pérturbatioh (Linearization) and normal mode analysis

In order to study the stability of the static state and thus determine the criterion for the onset of the Rayleigh-
Bernard instability, we consider the following perturbed state defined by (Chandrasekhar (1961); Drazin and Reid
(2004)) _ / N
V=0+v, T=T+60,C=Ci+¢p, P=P, +p \ (22)
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Following the classical procedure for linear mode analysis of Chandrasekhar (1961j, we substitute Eq. (22) into Egs.
(9)- (12) and the boundary condition (13) to obtain the following linearize equations

Vev=0 | (23)
aV ] 7 2 2 h

—==-Vp- ———(R,,& ~ Rk — v+ Vv (24)

s Ot Pr .
Pr[a%—f——a,w] =(v’-Bp (25)
Sc[q)aa—(f - azw) =V’ -R)p | (26)
w=0=0=¢p at z=i—;— (27
oT; oC . , ‘ . .
where «, = _3‘— and a, = -a—‘ are the non-dimensional static temperature and concentration gradients,
/4 z

respectively. Next we take the double curl of Eq. (24), using Eq. (23) and keeping only the vertical component of the
velacity, w to obtain

o 2 2J 2 1 2, | 2 : ~ '
—+ ¥ -V VW= ~—R V0 +— RV 28
(atl pr T Vh PrTh(P (28)
2 2
where Vf,=~a—2+-—a—2.
0x° Oy

We now study the of the normal mode disturbances which are chosen in our case to be two dimensional waves in the
horizontal plane (x, y) . To this end we search for solutions of the form (Chandrasekhar (1961))

w(x, y,z,t) = W(z)Expli(ax + a y) + Qt] _ |
O(x,y,z,t) = O(z) Expli{a x + a,y) + (] : (29)
@(x,y,2,1) = Y(z)Expli(a x + a,y) + ]

where Q = Q, +i€), is a complex number and QR,Q are real numbers. Substituting Eqgs. (29) into (25), (26) (28)
and the boundary conditions (27) yield

(D’ ~k* - B -ProQ)® = -Pra W (30)

(D* - k2 ~ R - ScgQ)¥ = ~Sca,W (31)

(D? -k - 2 -)D* - k>W = ;PlRTkZ@ + —;—Rskz‘{’ | | (32)
' r r

W=0=0=¥ at z=i% (33)

D’W =0 on a free surface (34)

0
where DEE— and k =a; +a; .
7 ,
Next, we study the stability of all possible disturbances for all wave numbers from the system (31) - (34). To this end,

we reduce the system (31) - (34) into a single scalar equation by eliminating © and ‘¥ from the system. This is
achieved by operating on Eq. (32) with (D? —k* — Pr MQ)( D’ — k> — R’ - Sc¢€2) and using (30) and (31) to obtain

(D2 - k2)(D? - k% - % - QX D? - k% - B2 - PrMQ)(D? - k% - R* ~ Sc¢Q)
| (35)
— Rpk2ay(D? - k? - R? = ScgQ) + ﬁRsazkz(Dz ~k®-BZ - PrMQ)W =0

Now, for idealized free-free boundaries Eq. (35) has solution of the form (Chandrasekhar (1961))
W = wSinnz (36)

where w, is a constant. Substituting Eq.(36) into Eq.(35) and simplifying yields the Rayleigh number as

7,2 lz 3 {(”2+k2)(”2+k2+ZZ+Q)(ﬂ2+k2.+a-R2+QS‘c'¢)
k“(n° +k“+R°) ' @n .

ScRsk’Ty (2 + k% + B2 + QPr M )}Tz '

Ry =

R '
\ W
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where‘ rl - M, FZ = M
2PrSinh(R/2) BCosh(Bz)
For the analysis of stationary convect:on, that is the onset of instability, we put ()2 = 0, Ry = Ras in Eq. (37) and

obtain
1

Ras = ——————— {(nz + kD2 B+ YA+ k + RY)(2 + K2+ BY)
k“(r“+k“+R) \
+ ScRek>Ty(x + k* + 32)}r2
The critical value of the wave number k = k.is determined by finding the minimum of Ras(k.) and following
Chandrasekhar (196 1) we minimize Eq.(38) as follows

aRgZ(ZIfC) = Zkl‘o + agkf + aﬁkz(‘) + a4k: ”azkf - a() = 0 (39)

(38)

where )

ap = B* 22 (z% + R¥)(2” + 1%)

ay = [22% + 2412 + RY) + 28202 Y12 + R + 42) |

ay =275 + 61*R? + R2RgScly + R* 3% + n?RP3R? +25°) + R - RgSely + m*2R? - 4%)
ag = 2 + R¥)(4n? + R? + B> + %)

ag = 772 +4R% + B? + 42

From Eq.(38), the critical Rayleigh number, Rac is obtained by substituting k = k., that is

== rzz 5 ((7r2+k3)(7r2+k3+);2)(7r2+k3+R2)(7r2+k3+Bz)+
ki(m° +kZ+R%) ' (40)

ScRok2 (7% + k2 + Bz)l“l)

Rac

4. RESULTS AND DISCUSSION

For the analysis of the effect of cooling on the stationary convection of thermosolutal instability of a fluid layer
heated from below with first-order chemical reaction in a porous medium, it is observed from Eq. (40) that Rac has a
minimum value when the denominator is a maximum. This value occurs atz = 0 , that is, at the centre of the channel.
Thus

Sinh(B/2)
Rac = 5 Z(B/%Z) 3 ((;r2 + kf)(rr2 + kC2 + ;{2)(7z2 + kc2 + Rz)(rz2 + kc2 + Bz)+
ki (r° +kZ +R") { (41)
ScRokZ(n* + k7 + B* o RI2
PrSinh(R/2)

Also, Eq. (39) is a tenth degree polynomial in the critical wave number, k.. and its roots cannot be easily represented

analytically. So we seek for numerical solution of k. from which we obtain the critical Rayleigh number for different
values of the parameters entering into Eq. (39). Solving Eq. (39) using the software “mathematica” (Wolfram (1991))
and the following values for salt water (R¢ =1000.Pr=7,S¢ =700) and y =0.5,R=0.2, 8 =0.1, we obtain

the critical wave number as k. = 2.22. However, in the absence of cooling, B, chemical reaction, R and porosity,

" ) 27 4 ScR¢ » n _
 the critical Rayleigh number is 7” + T with the critical value wave number of (—\5). Further in the

r
~absence of the solutal Rayleigh number this result is in good agreement with the critical value for the classical

27
_Rayleigh-Bernard problem of Chandrasekhar (1961) where Rac = 7”4 .
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Next, we investigate the numerical behaviour of the effect of cooling:"barameter, B on the critical Rayleigh
number given in Eq (41) with k. = 22 and various values of the parameters y, R, Rg,Sc,Pr. The results are

shown in Table 1.

Table 1: Effect of cod!inéjon the critical Rayleigh number, Rac for
Sc =700, Rg =1000, Pr =7 and various values of y , R.

k. B Rac Rac
x=05R=02 x=0,R=0

2.22 0.0 100233 100491

222 0.1 100343 100601

2.22 0.5 102991 © 103257

2.22 1.0 111521 111808

2.22 1.5 126607 126933

From table 1, it is observed that increase in the cooling parameter, B delays the onset of instability; while the presence
— of reaction enhances the onset of instability in the system. In addition, greater cooling is associated with greater
stabilization whereas the reverse is the case with higher values of the reaction parameter.

5. ©  CONCLUSIONS

¢ .
Although many studies already exist on the stability analysis of double diffusive convection in a horizontal fluid
layer heated from below in a porous medium, none has considered the combined effect of cooling and first-order
chemical reaction. In this paper we have studied the combined effects of cooling and first-order chemlcal reaction.in a
horizontal fluid layer heated from below in a porous medium.

Equation (37) when{2 =0 gives the value Ry = Ras for stationary convection given by Eq. (38); Eq. (41) gives the
critical value of the Rayleigh number Rae for k = k. which corresponds to the minimum of Ras(k_) at the centre of

the horizontal channel (z = 0) and the onset of stat'onary convection at pntchfork bifurcation. Thus, the main results
- of this paper using salt water parameters are s

. cooling delays the onset of instability
the presence of reaction enhances the onset of instability in the system
greater cooling is associated with greater stabilization
higher values of the reaction parameter results in greater destabilization of the system.
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