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ABSTRACT

We derived the theoretical moments and autocorrelation functions of GARCH models and those of their
ARMA transform. The autocorrelation structures are found to be the same for the two models On the basis of this, we
conclude that the ARMA transform is appropriate for GARCH models.
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1.0 INTRODUCTION

The assumption of constant variance in the traditional time series models of Autoregressive Moving Average
Models(ARMA) is a major impediment to thelr appllcatrons in financial time series data where heteroscedasticity is
obvious and cannot be neglected.

To solve the stated problem, Engle (1982) proposed Autoregressive Conditional Heteroscedasticity (ARCH)
model. However, Engie in his first application of ARCH noted that a high order of ARCH is needed to satisfactorily
model time varying variances. It is noted that many parameters in ARCH will create convergence problems for
maximization routines see for example Bollerslev (1986). To avoid these problems, Bollerslev (1986) extended Engle s
model to Generalized Autoregressive Conditional Heteroscedasticity models (GARCH). This models time-varying
variances as a linear function of past square residuals and of its past value. It has proved useful in interpreting
volatility clustering effects and has wide acceptance in measuring the votatility of financial markets. The ARCH and
GARCH models are known as symmetric models see Nelson (1991) for example.

Other extensions are the exponential GARCH (EGARCH) model of Nelson (1991), the mode! of Glosten,
Jaganathan and Runkle (GJR-GARCH) of 1993 as well as the threshoid model (TGARCH) of Zakoian (1994) . These
model and interpret leverage effect, where volatility is negatively correlated with returns. Equally important is The
Fractionally integrated GARCH model (FIGARCH) of Baillie, Bollerslev and Mikeson (1996) which is introduced to
model long memory via the fractional operator (1- L.

It is customary in literature to transform the GARCH model through «, = f:,j ~h, to an ARMA model see
Karanasos and kim (2001) for example. The aim of this paper is to attempt the justification of this practice.

The approach is by comparing the autocorrelation functions of the GARCH model with that of the ARMA
transform. Eni and Etuk(2006) have used the same approach to justify the Autoregression transform of the ARCH
model equation.

2.0 THE GARCH (p,q) MODEL

To make for parsimony in the modeling of conditional heteroscedasticitiy, Bollerslev (1986) proposed the
generalized ARCH model denoted GARCH (p,q) model.
in a GARCH model, the conditional variance is presented as a linear
function of past squared returns and of its past value. That is

-y r
hyo=a,+ > e, +D Bh e, 2.1
1=t 1=1
with parametric constraints
a, >0, 0, 20 i=leiqg: B, 20 j=1--p
If p=0, then (2.1) is an ARCH(q) process .and if p= =0, then /1,
is constant.
(2.1) can be written in the form
h o=, +@(L)e] + BILY1, e e e 22
where

a(L):alL+a3L:--~L" and B(L)- B,.L+B.L7 Bpl"
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Further more, re-writing (2.2) as
(-B(L)h, =a, +a(L)e]

h, — a 0 + 21 (_L) £ 12
I - B(L) 1- B(L)
a ~ 2 |
- S A € 0 2.3
I - B(L) Zl S

where A, is the coefficient of L' in the Taylor series expansion of

a(L)1-B(Ly)™,
which is an infinite ARCH model. v
The GARCH (p.q) model is related to the ARMA(p.q) moade! through the substitution of . A, = e,z -da,to get
£l =a,+(a,+B)&}, -Ba_, +q,
which is an ARMA(Max(p.q),q) model. This relation suggests that the theory underlying time series ARMA models can
be applied to GARCH models.

3.0 MOMENTS AND AUTOCORRELATION OF GARCH MODEL
Proposition I The M"™ moment of GARCH (1.1) model is .

[ el Y
|Z> ym+l l [aZ +B,- ]

i m+l~i i+

1
E(g'*m)_ E(Z 2'")}?,{ I»E(Z“a,+B,) J{

where m is a gamma function

Proof
h, =a, +a|£rz~| +Bh,
=a, +(alZ2 +B,)h,_,
L m . 2
pr =Y et/ 2 +B I
t ;m 0{ t 1771
[ i} ’ 2 -II"‘/-
{ Z'**—’fj—l———ao[(az +B)8 J
E( 2”,) E(ZZ’")E y;;z+l~z i+1 Z
K 1-Ele,z* +B,)"
L i
Remark
We note that for

E(s,2”)<co ,a, +B, <1
This becomes the necessary and sufficient condition for stationarity. We note also that for
Ee™)<w | E(Iog(a,Zz +B,)<0
This condition is necessary and sufficient for strict stationarity and Ergodicity of h, .1t is aiso in agreement with Nelson
(1991).Since it allows the case of ¢, + B,/. The condition E log(a,Z2 + B,S <0 isweakerthanthatcf a, + B, <1
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We also notethat the presence of F (gz""'“) in the numerator (3.1) suggests thét the (m-1);, moment must exist for
the my, moment to be well defined.

Corollary

i E(e )= X
i E)) I~ E(x, +8)) 32

( )- [1*1:& kilE@,z? +B,)+1] | | .‘_.3~3

@z +5)f-EG, +5,)]

i v(E))= a‘flE(Zj)ll (o2 f?‘))zj—h . E(a‘zzsz‘)zl .3.4
[-Elwz: +B ) -Ez’ +B,)]

Proof *,

Case i is elementary

Case i

Substituting m=2 into (3.‘1), we have

E(2' )20 E(@,2° +B )+ ai]l -E(z°a, + B, )|
I-E(Z°a, +B, | - B2’ +B, ] |

)ar [Ea? +B)+l]

- E(aZ +B, I~ Ele, + B,) ]

Case iii
Proof
v(e?)=Elg)-[E)f
B(Z )i [Ble,2? + B,)+ 1] a;
ez B - Bz +B Y| [ -Elaz +B,f
a(,[ Z‘il Ele, 2 +B, ) l—[hE(a,szB,f]
[i- E(a? +B)Hl E(ez? + Bf |

By substitution of E(Z;' ) it is easy to see that under condition of normality

. )= ‘5$2a§[1 2a,B, - B] | |
V(«‘I ) [1“((1|+Bl)]l|*3a| - 2a B, ~-B,2] _ 3.5

Hence the conditions for a positive variance are @ +B < | and 3a,* - 2a, B- B < 1.
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Proposition 11 »
The autocovariance between £ and &, of a GARCH(1, 1) madel

N

cov(elel, )=V, =

f R TE T ,
i-E@f-e@y s, + y |
[ ]Z° [1- E(A)]z[l - E(A)z]Za,?l'E((sf,_,,e,{"))

B[l -EA)F -(-E(a)) |, R,
i-E@AN]-E@QA)] {-EQA}fi-E@A)]

*

R

where A=(Z’a, +B,) \ ...3.6

Proof
There are two parts of the proof. In the first part we find expression for E(£ £, ) while in the second part, we find

2.2
var (g'¢.,)

Part 1
h, = +alg:2~| +B|h,_1
hh., =(ao+a|€/2~| +Blht-|)hz—l |
A
replacing  h_ =a +ag’, + B,
We have

hh,, = (ao +B,a, +a,e’, +aBgl, + B,"h,,z)h,_2
After repeated recursions we have :
H_
2
h hl -n ZaOB hl -n +ZaOB, ( l—«]h +B"h¢ -1

1=0
4

n ghn

,§,,-222a03' +szaoB' g, & +1 1B; 2
1=0

1-n

Taking expectations, we have

n-|

R B (- E(A))
E(s el )= er%d,B E(e e, )+ ( EANE )) | o

[[I—E(A)’]ZB' ]+B,"[1+E(A)f -[ 1-E(A)] ] [|~E(A)EI—E(A)]§:a,B Els
e [1 E(A) | 1-E(AY] - E(A)[l—E(A)’] i
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s e o MR M TR —

Partll
By definition

v, Cov(a, ,,,,)—

ol [\ - E(A)z]gB’ ];B,_" [1+E(A)] ]
©I-EA) T1-E@a)]
- B - Ay E an (es2,)

y
ag:

[I—E(A) I ;?E(A)zj —m’; L

a:[{x-E(A)}[l AR B+ (,[1 E(a) [ -e2(- E(A)z)]

i=0

-y -sars ]2-, l B, Ee2,e,)].

[1-&( (A |- E(ay]

Corollary
Under normality assumptions of Z,

2(0:, ~-aB} -« B,’}to2

M (7) Cov(glel)) =

(") Cov(£282 )'—3V — 2(a| +BlXa| ~alB12—alBlzhoz
T (-, -BY)¥(1-3al -22,B} -B? )

il And in general

(1= GO - B4y 128 +[l= EAY[I - EAF - N'a,B B, o)

ao 1=0

-B'jl B(a) | - (1-B(ay)

T - a, -B})’(1-3a; - 2a,B] - B}

AEE )= E(ZH[1- E(4)]

Proof
Case 1. Using earher results

(1-a,-B)MI-3a} -2a,6,-B )+

.. Bll-a,’ - 2,B, -B.*|- (1 -3a? - 2a,B, - B})

ai +a,(1~a, -B,) (1 -3¢} - 22,8, - B E¢!)

i

(-, -B,)(-3a; -22,B, - B})

(1-a,-B)I-3a - 2a,8,-B)+B [I-a -22, 6, - B’ |-(1-3a? - 20,B, - B?)+

30,1 - 30 20,8, - B,?)

V. =«
o (1-e,-B,)’(1-3a7 - 20,B, - B})

[A—
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2

~a,+3a; +2a! B, +a, B} - B, +3a} B, +2a, B} + B, +3a, -3a|3}
- o

~6a? B, -3a, B, +B, -B, o’ -2a, B + B
(1-e “Bl)z(l’"}alz -2a, B, ’BlzT

V’=

This reduces to
y . (a,-2a/B-2aB} )
I (“al_Bl)z(z":;al:”zalBl—Blz)

2a, ~a/B-2a,B’)a,
(]"al _BI)Z(] -3a; -2a,B, _B‘z)

Case 11
V, =

(I-a,-B,)(1-3a? -2a,B, ~-B})(1+ B)+2a,(a, ~aB!-a'B,)+
alla,(1-3a} -2a,B, -B)+3aB(I-a’ - 2a,B, - B’

+B,’[I-a’ - 2a,B, -B’]-1+3a} +2a,B, +B,’

' (I-a, - B,Y(1-3a} - 2a,B, - B*)

[1-3a? -2a,B,-B! ~a+3a] +2a/B, +a,B} -B, |
| +3a/B, +2a,B; +B} +B, ~3a/B, - 2a,B} +B} ~a,B,
+3a’B+2aB} +a,B} -B} +3a/B} +2a,B; +B/
+2a? -2a/B! -2a]B, +a, -3a] -2a/B-a,B/’
+3a,B, -32'B, -6a;B,’ -3,B, +B,* -a,’B,’
-2aB-B,'-1-3a} -2a,B, +B’
(I-a,-B,)’(1-3a} -B,-B,’)

S

‘This reduces to

__ 2@ +B)a -aB -a/B))
' (l-a,-B)*((1-3a - B} -2aB%)

We can conclude that in general

2(a, +B,)"'(a, +a,B! ~a/B))
(I~-a, -B) (1-3a? -2a, B, -B,")

n

or ' ' : wee 3.10
v, =(a,+B,)"'V,
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Case iii
Prpof,

“Usitig p(s,zs,z_") = }/1 in (3, 3) and (2.10) the result becomes obvious
0

Remark,

it is easy to see that under normality assumption

_(@,-a/B, -a,B’)

' 1-2a,B, -B}
_(o +B ) -a,B} -a/B,)
? 1-2a,B, -B?

And in general

_(a,+B)"(a, +a,B] ~a/B))
g 1-2a,B, ~B?

P, =(a, +B)" " p, n=23..

4.0 RELATIONSHIP WITH ARMA MODELS

.. 311

3.12

... 3.13

As already discussed in section 2.0, GARCH (p.q) models admits transformations to ARMA(p,q} models

through the substitution
h, =€} -a,
Hence GARCH(1,1) model becomes

2 2 2 .
e, =a,+a e, ,+B (¢, -a, )+ a,

J=a,+(a, +B,)e}, -B,a,, +a, (i)
This is an ARMA (1,1) model
Multiplying through by & , &/, we have
E, =a,E(¢})+(a, +B,)E, - B ,E(¢}a, )+ o0 (i )

2
£

E,=alE(¢})+(a,+B)E, -B,o! (iii )
To find E(¢/a,_,), we multiply (i) by a,_, to get

E(¢la,,) = (@, + B,)o} -B,c} = a,0]
Hence (ii) becomes

E, =a ,E(e})+ (a,B,)E, + (1l ~a,B, )5 (iv)
Solving (iii) and (iv) simultaneously for Eq, we have
E oo % (1-2aB, -Bj)o,
‘" (1-a,B,) I-(a, +B,)’
Hence -
Var(e?) = v, = 1= 2B, ~Bi)o, )%,
1-(a, +B,)
Also
al (¢, -aB, ~aB})e}

E, = >+ 3
(-a,-B)" . “~(a, +B))
And

- 4.1
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(a, -aB, -a,B] )cr

Cov(e/el) =V, =

]—(a,+B|)
2
EZ:——a—————+((1|+B)E
(I-a,+B,)
Also,
‘ a2
E,=—2% — +(a, +B,)’E
' (1-a,-B) *(@+B)'E,
And in general
2
a
E - 0 B n«iE
" (I"(1|'“B|)+(aI+ l)
Or ~

V, = (a, + B,)E,

H

V, = (a, +B))2E1

Vn = (al + Bn)"_lEl )
Hence the autocorrelation funictions become
2 2
P =a,—a,B,-a,‘B, 4.2
’ 1-2a,B, - B}

rpj_____(al+Bl)2(al—alzB!2_alBI2) 43
: - 2a,B, - B

Py .(al+B|)n_lp| 4.4

5.0 CONCLUSION

The results in 4.2, 4.3, and 4.4 are in agreement with 3.11, 3.12 and 3.13. we conclude that 4.1 is a proper
transformation of 2.1 for p=q=1 These results suggests that characteristics behavior of time series ARMA (p,q) models
can be applied to GARCH(p,q) models.
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