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ABSTRACT

L 4

in this paper an inventory problem that seeks to determine the quantity of an item to be ordered into a
warehouse and quantity to be sold (in each period) that will maximize total profit in N periods has been identified. The
dual linear programming (LP) model of the inventory problem is presented and subsequently modified to an alternative
method of solution to the inventory problem by dynamic programming approach. The results of a numerical example
obtained by dynamic programming technique are exactly the optimal solution of the inventory problem when the prirmal
LP is solved. This alternative method is a short cut procedure, which has the advantage of being computationally less
cumbersome when compared to the primal LP approach.
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1.0 INTRODUCTION

Over the years dynamic programming has been applied to solve many real life problems which before now
could not be considered for the applicability of the technique. For example, Clarke (1988) applied dynamiic'

programming to shed some light on possible batting tactics for optimal scoring rates in the game of cricket while Wotid
(1978) formulated and solved the problem of loom box sequence planning in wool textile industry using dynariic

programming approach. The number of applications of dynamic programming has also recently increased in areas

that are more susceptible to the technique. Mehimann (1980) stated that in the past two decades a body of literature
on dynamic programming has developed to focus on manpower planning. And in applying dynamic programming to
control British Local Government finance, Smith (1989) expressed further that more research work is being carried out
in the area of dynamic programming.

Though many applications of dynamic programming abound in the literature, Smith (198Y) observed that
many authors on dynamic programming still complain about the lack of enough practical applications of the technique.
The increasingly powerful computing facilities now available mean that the solution of many hitherto intractable
problems is becoming a reality. However, there remain a problem in encouraging students and practitioners to adopt a
dynamic programming approach in solving relevant practical problems. This paper takes the reader on a girded tour of
an example of inventory problem used to illustrate an alternative solution method for solving such problems. It is
hoped that it will encourage more applications of the dynamic programming technique.

A major problem in inventory theory is how to strike a balance between having too many quantities of an itern
on hand in a warehouse and running out of stock, Agbadudu (1996) and Lucey (1996). The study of inventory enables
us to formulate an optima! inventory policy which specifies: the optimal ordering or manufacturing quantity, the lead
time and the minimum total inventory cost, Ekoko (1999). For most companies the expenses associated with financing
and maintaining inventories are a substantial part of the cost of doing business. A lot of research work on inventory
theory including Taha (2002), and Hillier and Lieberman (2001) have been centred on finding the Economic Order
Quantity (EOQ) and minimum total inventory cost for inventory models. Our concern in this paper is the formulation of
an inventory problem in dual linear programming (LP) mode! and subsequent solution using dynamic programming
approach The dynamic approach of the model in this paper which is formulated in section 2.0 seeks to maximize the

total profit made in N periods when X (f ) quantity of an item is ordered in time ¢ into a warehouse and ‘j (t)

quantity is sold in time ¢ of period /.
2.0 DUAL LP MODEL OF AN INVENTORY PROBLEM.

Let D be the capacity of a warehouse having d items initially. Let x, be the quantity ordered at the beginning

of period j which are delivered at the end of the same period at a unit cost of ¢,. Let y, be the quantity sold at

period j at a unit selling price of S ; . The total profit in this inventory problem of N periods is 2 (SA,J’,‘ X, )
J=l ' -
Therefore the objective function is
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of the objective function (16), it will never pay to let R, or (J,, deviate from their smallest possible values. Therefore,

the minimization of (D — d) R, + d() s equivalent, in our case, to requiring that R, and Q, be as small as possible.
Suppose that we have determinad the optimal solution of (17) and find that the inventory at the end of period
1is d'. Let us now set up a new problem where everything is as before except that the initial inventory is d' rather

than d and that we wish to optimize the operation over the remairing (N —1) periods. By analogy with (17) the-
system for this problem is given by

12 —Cuy k=3(1)N
2 R, L k-3()N
>Ry +s, ,k=200N }
Qi 2 Q0 k=30)N
(D-d')R,+ d'Q; = min
20,0, 20 J

where the primes denote new values of R, and Q, . Repeating the previous argument, we see that R', and o,
must be as smail as possible for the optimal solution of (®0).
Continuing this procedure, we see that the optimal solution of (17) has the property that all R, andall (), arg

as small as possible. This fact is the key to the computational procedure and the solution can now be performed
practically by inspection.

If R, isto be as small as possible consistent with (13) i.e. R, 2~C, and nonnegativity requirement i.e:
R, 20  then )

(20)

R, =max (~¢c,, 0) (21)
Similarly, from (15) where (J,, is bounded from below by R, + s, and nonnegativity requirement O, >0,
Qy =max(R, +s,.0) , (22)

if Q, isto be as small as possible.
Eonsidering (14), (11) and R, > 0, we have ‘
| Ry, = max{QN ~Cya Ry, 0} - (23)
if Ry_, is to be as small as possible.
Also from (12), O, 2 Ry, + sy and Q,_, = 0, we have
Oy = max{RN—l +'SN—-I"QN'O} (24)
if Oy_ is to be as small as possible. The variables R,_, and (J,_, are determined in a similar way, and so on.
Thus computing R, and Q, using (21) and (22) respectively. the following recurrence relations can be
used to determine R, _, and Q, _,.

R, =m ~c, R, 0
k-1 a(Qk k-1 ) }k:‘Z(I)N , (25)
Oy =maAR,_ +5,,, 0, ,0] (26)
(15) and (16) are repeated each time until the process terminates at R, and Q,. R, and (), are then substituted

into (16) to yield the minimum value of the objective function of the dual LP problem which by duality theorem is equal
to the maximum value of the objective function of the primal LP problem.

Determination of the Original Primal Variables.
So far the optimal value of the objective function can be found using (16) (i.e. (D d) R, +dQ,) which is not
yet in terms of X, and y ;- If we had solved the original dual in (5) - (8) by the simplex method, then the optimal

solutnon of the primal (in terms of x, and ¥, ) world have been obtained using the optimal simplex multipliers of the'
dual it is not possible doing so now since we modified the procedure to a dynamic programming approach for the dual
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LP problem. But since from (21), (22), (25) and (26), R, and (), are partial sums of ¢, and s, then itis possible to
simplify the objective function (16) i.e. (D -d ) R, +dQ, to the form: ' ’
—0iG — 050y — O Cy 48 + Sy + -+ By

Which can further be equated to (1), the original.primal.ebjective function. That is
N

Z(sfyj *ijj) = =040 — OG0, == UNCy + B8, + o5y +o o+ Bysy o @n

J=l ‘
If ties occur in evaluating (21), (22), (25) and (26), then multiple optimal solutions exist, because the ties mean that the
R, and Q, can be differently expressed in terms of the partial sums over the ¢, and s . - These different
expressions will lead to different optimal policies in terms of the x, and Y, . but they will, of course, all be equally

profitable.
4.0 NUMERICAL ILLUSTRATION OF THE DYNAMIC APPROACH.

Example

The unit cost prices and unit selling prices of a commodity for five time periods are tabulated as follows:
Period /. 1 2 3 4 5
¢, (M) 25 25 25 35 45
5, (N) 20 35 30 25 50

If initially there are 50 units of the commodity in ‘a warehouse which has capacity for 200 units, determine by dynamic
programming approach the quantities to be ordered and sold that will maximize the total profit from all the periods.

Solution i
We have 5 periods in this example, N = 5 and we proceed as follows:
R, =max (-¢,,0)=0 Q, = max (R, +s,,0) = s,
R, =max(Qs ~Cy ,RS,O):: Qs —c, O =max(R4 +Sq Q5’0)= oF
‘Rs = max (Q4 —Cs ,R4,0)= Q¢ Q. ='”ax(R3 + 55, Qvo) = Ry + s,
R, = mw‘(Qs -6 ,R3,0)= g; -c, O, = max‘(Rz + 5, Qaro) =R, +5,
R, =max(Q2 - < ,RZ,O):4O =@, - ¢ o, =max(R| +5, Q2’0)=65= 0,

We need the values of R, and Q, because the objective function in (17) is in terms of R, and Q,. To obtain for
example R,, we do continued substitution for O, and R, in terms of only ¢, ands, as shown in (28).

¢, and s, are given in the question. Q2 —C =40, R2 =30 .. R: =40.
- Maximum profit w =(D — d)R, +dQ, = 150 x 40 + 50 x 65
‘ = N9,250.00
Expressing the R, and Q, interms ofthe ¢, and s, , we obtain ,
Ry=0 Qs =5
Ry,=s; — ¢, O, =35
R,=s, - ¢, O; =85 —¢; +5, — (28)
R, =5y -¢c5;+5;, —c, @, =8¢, +8;—¢, +5,
Ry =s,~-¢cy+585;-¢c,+5, ¢, Q=85 =C; +8;-C + 85,
(D-d)R, +dQ, = ~(D-d), -~ Dc, - Dc; + Ds, + Ds, + Ds,
] .
Z(s,y, —c‘,xj)= ~(D~d)e, - Dc, - Dc, + Ds, + Ds, + Ds, (29)

i=1
By comparing coefficients of like terms in equation (29), x | and y , are obtained as follows:
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=x,=D-d=150 »=

%, = D =200  y,=D=200
x, = D=200 vy = D =200
x, =0 Vs =0
x5=0 ys=D=200

50 CONCLUSION
The type of inventory problem treated in this paper is different from the common type of inventory problem:s
that seek to determine EOQ and minimum total inventory cost. We have found that the quantity of an item ordered intc
a warehouse and the quantity sold at each period which will maximize total profit from N periods can be obtained
through dual LP model formulation and subsequent solution by dynamic programming. From the resuits of the
numerical example presented in this paper, it can be explained that in the first three periods which have lower ordering
cost, ordering should be done to full warehouse capacity, while nothing should be ordered in the last two periods
because of high ordering cost of those periods. On sales, nothing should be sold during the first and fourth periods
when unit selling prices are low, while every item in the warehouse should be sold during the second, third and fifth
periods when the’ selling prices are high. Though these results of the numerical example obtained by dynamic
programming are exactly the same as the optimal solution of the inventory problem when the primal LP model is
solved, the dynamic programming approach is computationally less cumbersome.
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