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ABSTRACT

In this paper, an iterative search method for estimating the parameters of an autoregressive process of order p, AR(p) is
considered. The iterative search method was achieved by employing the Gauss-Jacobi iterative search method for solving linear
system of equations. The estimation procedure includes finding the lag coefficients and the maximum fag order p of the process
using the order selection method of the Akaike information criterion (AIC). The iterative search method is computationally efficient
and converges to the same parameter estimate using the least square method. It has the advantage of handling large system of
equations which is difficult to handie when using the Least squares method. Some simulated data and one real life data are used
to demonstrate this approach.

KEY WORDS: Akaike information critenion; Autoregressive process of order p (AR(p)); Gauss-Jacobi.

1 INTRODUCTION

In order to estimate the parameters of an AR(p) model, it is appropriate to estimate the maximum order p of the process
and the coefficients of the lag order of the process. |f an order lower than the true order of the process is selected the estimate of
the parameters will not be consistent, if higher order is selected the variance increases. The identification of the order of a
stationary Box-Jenkins time series model has been crucial in the literature. Three main approaches have been proposed in the
identification procedure of an AR(p) process. The first one is called the Box-Jenkins approach whose identification procedure is
based on the study of the sample autocorrelation function (SACF) and the sample partial autocorrelation function (SPACF). Box
and Jenkins (1976) and Bowerman and O'Connell (1993). The second approach is the information criterion procedure which
involves the use of an order selection based on the minimisation of some given functions expressed in terms of the order p of the
mocdel. Example references are given it Shibata (1976), Hannan (1980) and Tsay (1984). The third is the procedure due to Pukkila
et al. (1990), which is based on an autoregressive order determination criterion and on linear estimation methods. A purpose of
this work therefore, is to present an alternative way of estimating the order and the lag coefficients of an AR(p) process using the
iterative scheme of the Gauss-Jacobi search method for solving linear system of equations. This method has an advantage of
chogsing the order and estimating the parameters of the model simultaneously.

The rest of the paper is organized as follows: in section 2, the methodology is described; in section 3, some simulation
results are given; in section 4, some computational experiments and results are presented while section 5 concludes the work

2 METHODOLOGY

Consider a stationary time series {y, } which satisfies the following linear equation for some integer p > 1,
+ €, @1
/7

where @, &,."**, @, are real parameters such that the solution to the equation p' = Za,y’” are all less than 1 in
=1

v“/ = (llyl‘l + a:."»/«z Foeeet a/'-)','h

absolute value and £, constitute a sequence of independent random variables with the same normal distribution N(O.agz)
The: model as presented by (2.1} is non-degenerate of order p if a, # 0 and of zero order if ¥, = &, e the series is completely

described by a white noise process: (Shibata) 1976. The presentation of (2.1) is based on the assumption that the mean level of
the stationary process ié,u =0, otherwise (2.1) can be re-written by subtracting 4 from all the lag vanables,

¥, ,,j =12, -. p From (2.1), if we assume that the true order of the process 1s known and is of order p, then the parameters
can be estimated by considering the sum of squares error as
n n
2 : .,
Z‘E/ = Z{)", ‘_alyb-l _az)':-z T _a/nvl>/7} (‘)‘ 2)
t=p+l t=p+i
where £, is not defined for alit <p Now Let us write the sum of squares error above as

" r
A= Z{,V, ~Za/«vr-x}: (23)
=l

t=p+l
Then the least square estimate of «r _ that satisfy (2.3) is found by solving the set of equations
fas
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N _
—— =0, Jj=12,.p (24)

oa

J
which lead us to considering a p system of equations in p unknowns of the form.

Z)’lyl-l :alzyl-lz mzz}ﬂ-l)’«-z tota, Zyi—-l.yl«p

=2 =2 1=3 1=p+i
n Il_‘ n 2 n
z}’;yt-z = Z.V:-n)’:-z mzzy:-z teta, Zy/-zy/ -
=3 =3 =3 i=p+l
. (2.5)
n ”..‘ n I'lﬂ 3
Zylyl—p =@, Zyt—lyt—p +a, Zyl—-2yl—p teta, Zyup
1=pel t=p+l t=p+l t=p+l
Now, let us denote the sum of cross product and sum of squares of the observations by the following notation.
n
g, = > VY, =0l pandj=12,p (26)
t=p+i
Making use of the notation in (2.6), our system of equations presented in (2.5) can be written in matrix form as:
Ga =g, (2.7)
g &2 - - - &
En E&n - - - &ap
where G =| ' ' (2.8)
gpl g/»Z M v gpp

a= (a,.az.-“.a,,)', g, = (gm,goz,m,g(,p)‘. G is symmetric, since g, =g, vV [ # j. G is diagonally dominant, it
includes g, > g, v i< k Since G is non-singular, the solution to equation (2.7) is given by @ = G B £o-

Now, for large P system of equations, computation of G ™' becomes cumbersome. In fact, the entries g,,Vi, J involves

sums of squares and sums of cross product of the lag variables, which requires heavy computations. In other to save space, we
require that the system of equations preserited in (2.5) can be re-written compactly as:

” n n r
2 PN ~ ..
Xy,y,_l =a, Zy,_, + Z Za,y,‘,y,_/ (s )y =L1L2,..., pim = max(i, j) (2.9)
[= 441 1= p+1 t=pi+] 1=]
1)

hence we could achieve a)"s by developing an iterative method from (2.9) in the following manner below:

i y,y,_, - i ia/“)yl«lyl«j)

t=f+ t=ma) =l
(s+1) _ 1%

n 3
pR o
(=1+1
Equation (2.10) is actually the Gauss-Jacobi iterative scheme for salving linear system of equations, as in Burden and Faires
(1993, pp. 406-408). This scheme converges if the system of equations is of full rank and if it is non-singular. The stopping criteria

(S+1)

4, )y =12,..., psm = max(i, j) (2.10)

/

a ml <Tol, j=12,--,p ands =0,1,---,L, where Tol is calied the error tolerance allowed for the

requires (@ ; ,

',j =1.2,---, p must be chosen to ensure

iterative scheme to stop and it is usually chosen by the user The initial guess «"
fast convergence. In this work, the initial guess chosen was @'"’ = 0. j = 1.2.....p and the error tolerance, Tol =107,
] ; y 4

However, fast convergence is guaranteed if a‘/“' ,J =1,2,---, p are chosen close to the true parameters a ,» Provided they

satisfies stationarity condition ¢f an AR(p) model.
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Moreover, the AIC requires the maximum order p for which the function AIC(ar) = nlogo?(p)+2p attains its

minimum, where O’f (p) is the mean sum of squares of the residuals computed from (2.2) after estimating the parameters of the
mode! for any given order p>0 (an integer). Shibata (1976). Alternatively, Sen Liew and Chong (2005), also defined the AIC as
AIC(a) = -nlogo}(p) +2p wheneverlogo(p) <0

3 Simulation results
In order to demonstrate the procedure described in section 2, the following data generating process (DGP) are
considered.

Model (a) y, = 0.5y, , +¢&,,y, =-0.5
Model (b) ¥, = 0.2602y, , ~0.2578y, , +¢&,,y, =-0.5
Model (¢) y, =0.35y,_, —0.125y,_, +0.25y, ; +¢,,¥, =0.5

The error, &, , which is normally distributed with mean 0 and variance 1 is generated using the Microsoft Excel data

analysis library, for 500 observations, respectively. The first 300 simutated observations are discarded to remove initialization
effect from the data and therefore the remaining 200 simulated data is used for our experiment.

4 Computational Experiment and Results

As an illustration, each of the simulated time series data is subjected to an AR(p) models of order 1 up to order 3 to see if
the true order p of the process can be captured by the minimum AIC using the iterative scheme. Similarly, the parameters of each
of the model are obtained using the matrix in (2.7) that was derived from the least square method. The results obtained using
matrix (2.7) will be called the direct method and the results from the iterative scheme given in (2.10) will be called iterative method.

41 Direct method
When p = 1, the estimate of the parameter, &, . using matrix (2.7) when the order is 1 gives the following:

@, =& (4.1.1)
&n
When p = 2,

[04
[gm] _ (gn 82 j[ l) with 2., = 211 4.12)
8 gy En /X

The estimate of the parameters «,, ¢, using matrix (4.1.2) when the order is 2 gives the following:

& _808»n " 8ndn & _ &~ &u8n

I En&axn _grzz 7 En8» "g122
Whenp=3 '
o g 8 &u |l &
| = |8n 8n &xn| & |Wth g, =g, &;=8&; andg,; =&y (4.1.3)
&o: gs1 En &n/\%

The estimate of the parameters «,, &, , &, , using matrix (4.1.3) when the order is 3 gives the following:

g, = £0(8,8xn ’”g223)+goz(g|3g23 '“glzg33)+2go3(g|2g223 ~81:8»)
811(82385 —8%) +28:8)38n ~£1:8% ~€1n&n

a, = 801(81382 “gnzgs,%)**zgoz(gngn _g123)+zgos(glzgzn - 818x)
811(8:385 —8%)+ 28,8385 — 81285 ~ 1:8n

4. = 801(81282 ~ £1380)+ £0(8,815 — £185) + 8:(&1&1, ”'glzz)

3 2 2 2
£1(8238: —83) 1288385 — 81285 — £138n
The results of the parameter estimates of the above procedure are given in Table1 below:
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Table1: The summary statistics of the estimated parameters of our simulated model! in section 3 using the direct method

Models Order(p) Parameter(s) Variance(p) | AiC
Model (a) | 1 a, = 04944 0.9730 7.4806 |
Model (b) | 2 @, =0233La, =-0.2720 0.9732 54350 |
Model (c) | 3 a, =0.3558,a, = ~0.1614,a, = 0.3145 | 0.9739 11.2852

4.2 Iterative method

The implementation of the iterative scheme presented in (2.10), was achieved using a program written in Microsoft
QuickBasic: The algorithm of the program is given as follows:

Step 1: Generate the error sequence, £, .

Step 2: Generate artificial time series observations for each of the model in section 3 using the error sequence, &, , in step 1.

Step 3: Estimate the parameters of the model using the iterative scheme of (2.10) by setting p =1 to 3. At each point of

convergence for the specific parameter(s), estimate the AIC.

Step 4: The order p and the given parameters at which the process attains its minimum value gives the model.
The estimates of the parameters obtained from the iterative scheme are displayed in Tables 2, 3 and 4, respectively.

Table 2. The summary statistics of the parameter estimate of the three models with their corresponding error variance and the AIC

Order(p) | Parameter (s) Variance (p) | AIC lterations |
1 a, = 0.4944 0.9730 7.4806 1
2 a, =0.4923,a, = 0.0043 0.9740 9.2676 | 15

3 a, =0.4918,a, = -0.0295.c, = 0.0691 | 09741 112671 J 58

For true order P = 1, n =200, the true model is given by: y, = 0.5y, | + &,

Table 3. The summary statistics of the parameter estimate of the three models with their corresponding error variance and the AIC

For true order P = 2, n =200, the true model is given by: y, = 0.2602y, , - 0.2578y, , + ¢,

Order (p) | Parameter (s) Variance (p) | AIC | lterations

1 a, = 0.1827 1.0515 12.0451 |1

2 a, =0.2331,a, = —0.2720 0.9732 94250 |6 J
3 a, =0.2521,a, = ~0.2884,, = 0.0705 | 08727 11.5372 | 1 }

Table 4: The summary statistics of the parameter estimate of the three models with their corresponding error vanance and the AIC

4.3

["Order (p) | Parameter (s) Variance (p) | AIC Iterations
1 a, = 03219 10768 [ 167955 |1
2 a, =0.3399.a, = -0.0557 1.0767 18.5649 | 8
¥ a, =0.3558,a, = -0.1614,a, = 0.3145 | 09739 112852 | 14

For true order P = 3, n =200, the true model is given by: y, = 0.35y, , —0.125y,_, +0.25y, . +¢,

RESULTS

Table 1 represents the estimate of the parameter(s) of each of the simulated models where the true order is assumed

known and fixed. Then, Tables 2, 3 and 4 represent the results obtained from the iterative scheme of (2.10). The asterisks on
some values of the order (p) indicate the point for which the AIC attains its minimum value. From Tables 2, 3 and 4, it is clearly
evident that the true parameters of the model using the iterative search method converges to the same parameter(s) values
obtained using the least squares method. ’

44  DATA ‘ .

The data used here is taken from Bowerman and O'Connell (1993, pp. 471). The data comprise the daily readings of the
viscosity of a chemical product, XB-77-5, for 95 days. The viscosity data as analysed by these authors, was found to be stationary
since the SACF dies down fairly quickly in a damped sine-wave fashion and the SPAC has a spike at lags 1 and 2 and cuts off
after lag 2. As a result of this, they came up with an AR(2) model for the viscosity data. Representing their model as -

ES
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y, =0+ay,  +a,y, ,+& whered = u(l~a, —a,), the least squares point estimates of the parameters yielded

5 =26.8577.a, = 0.61356.c, = ~0.38304 Writing this model as

YV, -y =y, — ) +as(y, , —p)+Fa (v, - u)+E, where p= n"Zy, is the sample mean, p is

1=]
unknown and as usual & ~ N(O, o‘f) The result of the implementation of the iterative scheme presented in (2.10) to the above
situation, is given in Table & below

Table 5: The summary statistics of the estimated parameters of the viscosity data with their corresponding error variance and the

AIC
Order (p) | Parameter (s) Variance (p) | AIC Iterations
1 a, =0.4470 46992 149.0020 |1
2* a, =0.6130 38754 1315490 | 12 |
a, =-0.3836
3 o, =0.5507 37493 1326907 | 23
a, =-0.2822
o, =-0.1682
4 a, =0.5459 37162 1327078 | 17 B
a, =-0.2896
a, =-0.1526
a, = -0.0297 J

From Table 5, it is clear that the iterative scheme was able to capture the true order of the process and the corresponding
parameters with the sfight difference resulting from the mode of presenting the model.

5 CONCLUSION
An iterative method for estimating the parameters of an AR(p) process has been considered. The procedure empioys ti

Gauss-Jacobi search method for solving linear systems of equations. This procedure is found to be as efficient as the Leas!
squares method in estimating the parameters of an AR(p) process when the order p is already known. The implementaticn

requires a simultaneous estimate of the order p and the parameters a, ,j =1,2,-, P 1t has the advantage of handling large
system of equations which is difficult to handle when using the Least squares method
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ABSTRACT

We showed how autocovariance functions can be used to estimate the ARCH(1) process corrupted by AR(l)
er-ors. we performed simulation studies to demonstrate our findings. The studies showed that our model was able to
very closely estimate the required ARCH process in the presence of AR(1) errors.

KEY WORDS: AR, ARMA, ARCH. Error and Process Estimation
1.0 ARCH FRAME WORK.

Let {y,} denote a stochastic process with mean ;, then the error term is defined as (see Bollerslev, Engle and
Nelson (1994))

€= Y= Uy
Under the assumption of constant variance, and correct model specification,
£, will be distributed as Z, where Z, is any symmetric distribution. However, under a time- varying variance condition,
¢, will be expressed as a product, ie

£ =2 h,uz
where h, is the conditional variance at time t and Z; is any symmetric distribution. Bollerslev, Engle and Nelson
(1994) defines the g, process to follow an Autoregressive Conditional Heteroscedascity (ARCH) model ARCH process
if

Eei(e)=0  t=12,
In addition, the conditional variance is

h = var,w,l{s,}: E,,_I{E,Z}.
where E, (.) denotes the conditional expectation when the conditioning set is compose of information up to

i

time t-1
Engie's (1982) ARCH(q) model is presented as ARCH model as a linear function of the past squared
disturbances. That is

k)

A
g =z h,
and

o R
h, =, Za,g', ;
11

20 PROBLEM FORMULATION

Consider the ARCH (1.1) model equation
hoa,tae] . (1)
and
PR
with parameter constraints
o, >0,a20

These constraints are meant to ensure that the variance is positive.
Equation (1) admits transformation to AR (1) model through the substitution
a, = Sf -h,,
to get
g ~a,tagl, ta, . )

or
(- al)e! =a, +aq, (3
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