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ABSTRACT

In this paper we have examined the warehouse problem in which the warehouse has a fixed capacity with no
initial stock and supply and demand are periodically carried out for a finite time horizon. in addition to the usual
constraints in the linear programming (LP) formulation of the warehouse problem, we included the periodic excess
demand constraints in the LP formulation, which by a theorem reduced the LP probiem to a more sparse LP praoblem.
The resulting sparse LP problem has the observed advantage of less computational time when solving either manually
or by computer. The sparse LP problem is numerically illustrated and solved using a computer program. The results
show that in the LP problem augmented with excess demand constraints, no items are supplied and sold in periods
when the unit selling price 1s lower than the unit cost price. We aiso observed that the level of effectiveness which is
measured by the objective function is much lower than that of LP problem which is not augmented with excess
demand constraints. This agrees with what generaliy happens when additional constraints are incorporated into a LP

problem.
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1. INTRODUCTION

The management of warehouse is directly
connected to both the transportation model and
inventory control. Ignizio (1982) stated that the
traditional transportation problem is concerned with the
movement of a homogeneous product from several
supply nodes to several destination nodes. Takakuwa
(1998) and Takakuwa and Fujii (1999) referred to both
the supply and destination nodes as warehouses.
Warehouses are very important in the control of
inventory and their treatment in relation to inventory
theory is the focus of this paper. Therefore, a good
understanding of inventory is essential for the
consideration of the warehouse problem. Kothari (1982)
defined inventory as the physical stock of goods in the
warehouse which when it is too little (Taha, 2002)
results in expensive opportunity cost in the form of
emergency production for accelerated service or loss of
goodwill and profit from potential sales. The simplest
way of satisfying customers is to hold large stocks. But
holding large stocks according to Shroeder (1981) and
Ekoko (1999) will mean high inventory-carrying charges
(such as storage, deterioration, pilferage and insurance)
and possible losses caused by price declines. Kootz and
Weigrich - (1988) and Agbadudu (1996) identified the
following as some of the benefits of inventory control:
Procurement of goods in economic quantities to attact
discount and reduced transportation cost; elimination of
delays in production caused by the non availability of
required materials; and checking the over accumulation
of inventories so that investment is consistent with
production requirements.

The stocks in the warehouse could be raw
materials, semi-finished and finished goods, Riggs
(1970) and Williams (1988). it should be understood that
the finished goods of one organization could be raw
materials of another firm. For example, planks which are
the finished goods of a sawmilier are the raw matenal
inventory of a furniture maker, Unugbro (1994).

The commonest nventory question most
researchers have always addressed over the years in
the literature is: What is the optimal quantity to be
produced or ordered that will minimize total inventory
cost, Hillier and Lieberman (2001). But as pointed out in
Kothari (1982), "New and new techniques are helping to
answer inventory questions." Hence the unique
inventory question in this paper is what quantities of
goods are to be ordered and sold from the warehouse in
each period in order to maximize total profit. The
solution is obtained using a computer program. The
types of inventory costs are discussed in Lucey (1996)
and Evertte and Ronald (1978) as well as other
literature. But Gandner and Deannenbrig (1979)
described these costs as "serious gap that exists
between theory and practice in inventory management”,
because the holding and shortage costs typically
assumed in the theory are difficult, if not impossible to
measure in practice. The warehouse problem in this
paper has no such difficulties as we seek for the optimal
ordering and selling quantities of the periods that will
maximize. total profit. Furthermore, the warehouse
problem under consideration is assumed to have no
initial quantity with nonnegative periodic excess
demand. The inclusion of these assumptions resulted in
a more sparse linear programming problem, Ekoko
(2005).

2. THE WAREHOUSE PROBLEM AND ITS

FORMULATION AS A LP PROBLEM

A warehouse is a secured house or place where
goods that zre produced or ordered are possibly kept
and preserved until they are sold. A warehouse also
serves a secondary purpose as depot from where
retailers can buy their wares for sale to their customers.
Thus the warehouse problem is the determination of the
periodic quantities of items ordered and sold that will
maximize the total profit.

We now proceed to formulate the warehouse
problem as a LP problem. Let £ and ¢ be the capacity
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- of the warehouse and initial quantity of items in the
warehouse respectively. Furthermore, let x, denote the

I(I)n) ata

is the quantity of items

quantity of items ordered in period j (j =

unit ordering cost of ¢, while x/

sold in period ; at a unit selling price ofc’/. Given that

E and ¢ are known and demand is periodic in excess,
we seek to determine the optimal quantity of
x, and x' that will maximize the total profit of

operating the warehouse. Before continuing we state the
following assumptions of the model.

Some assumptions

(a) We can order for items and sell items at any
time period subject to space and commodity
availability respectively in the warehouse.

During each small time period the ordering cost
and selling price are constant and may be
different from those of another period.

. The warehouse problem is to be examined for a

given length of time made up of n finite time
periods.
For items of social services that are essential,
there is a legislature that in each period prices
of the items should not be increased even when
the items are in short supply.

The warehouse problem has two linear constraints,

which are based on periodic excess demand. By excess

demand, we refer to the expression (x'/ ~xl) 20.
The first constraint based on excess demand
stipulates that the sum of the first / periodic excess

demand should not exceed the initial quantity in the
warehouse. Mathematically, this can be stated as:

—x,)<e i=1(1)n )

(b)
(©)

(d

1

>

7=}
The second constraint states that the quantity ordered
during the ith period cannot exceed the leftover space
in the warehouse after the sum of excess demand from

'

Max z= ¢)x] +C5X5 +CX5 + 4+ 0l x, — € X €)X,
AN R
X, - X,
x; 4 X, -X, X,
X, X, +Xx; -X, X,
X HX, XLt X X X,
xl
- X, +X, +x,
-x, —X X, +x,
._xl’ - Vr; ............. x'” f ‘, ’\‘] + X} +
X, , X, Xl XX, x, >0

the first (i—1) periods has been satisfied.
Mathematically this can be-stated thus:
N B 7
x < E ‘{c Z(x’/ - x/)J
L /=4
This simplifies to
' -
le MZx'/ SE-e, = 1(1)n (2)
&l pet

Where it is understood that the second summation in
equation (2) does not exist when i=1, so that
x, <E-¢ ‘

Since we cannot order for or sell negative quantities, it is
clear that

x, 20, x 20 (3)
The total profit from ali the n periods is
Slex —ex)) @

1=l '
- (4) constitute a LP problem which is stated thus:

M
1 .
Maximize z = Z(c'/x'/ - c/x/)

1=l

subject to

z(V - X ) <e or Z\‘ Vr <e (i)
+ Zx, S_E'e, (i =1()n)

The system (5) is the LP model of the warehouse
problem. The LP model in (5) has 2#n linear constraints,
2n nonnegativity constraints in 2n variables. Further

simplification of (5) yields the system in (6).
B C“\X} T Cn xu
S ¢
< e
- Xy <e
.x} ......... . x” < ¢ (6)
< ke
<E-e
+ X, < E-e
................ + X, <k e
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The optimal solution of the LP model is also the optimal
solution of the warehouse problem.

3. Imposition of Additional Constraints on the
Warehouse Problem.
The two requirements to be added to the LP
problem in (6) are: :

(©)

that the excess demand should be ‘

(a)
nonnegative periodically e
(x -x) >0

(b) the warehcuse initial quantity should be

zero. ie. ¢ = ()

So we can augment the LP problem in (6) with these added constraints as follows:

Max z = ¢ +¢5xy +eixl++ X!

nn

A B
r .
X, -
XX XX
’ ’ ’
Xt X, +x] - X, X
R A N
X,
— x]' + Xl + X,
-X, - X, +X, X X
[ r
— 'xl _xz .............. X”_ ) + XI + X_\ .
r
X X|
’ -
X} R
+x; ¥
’
H
Lol e x! . >0
xl.xz, yx"lxl‘ xj'“ ‘xn =

In correspondence with the specifications in
Ekoko (1999), equation 7(a) is called the objective
tunction, which is the measure of effectiveness.
Equations 7(by) - 7(f,) constitute the set of linear
constraints while 7(g) is the set of nonnegativity
constraints. Specifically, equations 7(f;) - 7(f,) constitute
the n periodic nonnegative excess demand
requirements. The warehouse problem in LP form which
is expressed in 7(a) - 7(g) is compared to the former LP
in (6) as follows: The objective functions and
nonnegativity constraints are the same in both LP
problems. The initial warehouse quantity, ¢ is specified
to be zero in the latter LP problem. By the addition of »n
extra nonnegativity excess demand constraints to the
latter LP problem the latter LP problem has a total of 3»
finear constraints (as against 2s in the former) in 2n
variables.

Before continuing, let us state and prove a
theorem which is based on latter LP problem in 7(a) -
7(9)-

Theorem
Given that the warehouse has-no initial quantity

(i.c.¢ =0) and that the periodic excess demand is

nonnegative ic. (x/ x,) > 0 then,

SCX T CXy X e e

- (”.\’,,
0 7{b, )
<0 7(b,
< 0 7(b.
\/r = 0 7(hn)
< E 7(d,)
< E 7(d,)
< E 7(d,)
........... bx. < K 7(d)
>0 7(1)
>0 (1)
7(1,)
Y, =0 7"/,)
()
(i) X =,
(ii) 0<x, <E and 0 <x'<E
and (i) The LP problem in 7(a) - 7(g) can be

reduced to have only n variables, v, which

are the periodic quantities sold.
Proof ‘
The proof of the theorem is given as follows:
From equation 7(b,) and 7(f,), we have
x;oox, =0
i.e x| = x
Substituting equation 8(a;) into equation 7(b;) and
considering equation 7(f,). we have

8(ay)

xi—x, =0
8(a2)
e x, =x,
Continuing this way, we have
x, -x = 0 8(an)
ie x =x,
From equation 7(d,)
X S F 9(ay)
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By substituting equation 8(a,) into equation 7(d,), we
have

x,<E 9(a,)
Similarly, substituting 8(a,) and 8(a,) into 7(d,), we have
%<k 9an)
Max z=Ac|-c )x, + () =, )x, +
s.2.
x, £ E
x, < E
x, £ F
x, < FE
X0 Xy, x, 20

e

And continuing this way, by substituting equation 8(a,) -
8(a. 1) in equation 7(d,), we have

x, <Lk

Since x’ =,

9(an)
v j= l(l)n), the objective function
can be expressed only in terms of the x  variables and
the LP problem in 7(a) - 7(g) is now reduced to:

t

no cn )x "y

This completes the required proof and we proceed to numerically illustrate the system (10) in section 4

4. Numerical lllustration

The unit cost prices and unit selling prices of a
comimodity for five time periods are tabulated as follow:

Period | 1 ‘ 2 3 4 5

25 25 25 35 45

¢, (N)

C', (M) |20 35 30 25 50

If initially there are no items in the warehouse which has
capacity for 200 units, determine the quantities to be
ordered and sold that will maximize the total profit from
all the periods.

Solution
The LP form of the warehouse problem is as follows:

Max z=-5x; + 10x, + 5x,- 10x, + 5x,

St

x; <200
x, <200
200

X Xy xe 20

The computer program in PASCAL, which is used to
solve the numerical problem is in fig. 1 while the intial
and optimal tableaux of the solution are in fig. 2.

IA

Xs

Program

PROGRAM Simplex (input,output) ;

CONST
=20; m=10; {No. of variables and constraints } {**}
ncols=21; {Maximum no. of columns in.tableau } {**)
fwt=8; dpt=2; {Output format constants for tableau values} {(**)
fwi=l; {Output format constant for indices } {**}

largevalue = 1.0E20;
TYPE mrange = 1..m; ncolsrange = 1..n;

smallvalue=1,0E-10;

matrix = ARRAY [mrange,ncolsrange] OF real;

column = ARRAY [mrange] OF real;
baseindex = ARRAY [mrange] OF integer;
row = ARRAY [ncolsrange] OF real;

rowboolean = ARRAY [ncolsrange] OF boolean;

VAR
a : matrix;
b : column;
c ! row;

{ Matrix A in Standard form of problem }
{ Vector b in standard form of problem }
{ Coefficients of objective function }
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basic : baséindex; {'Basic variables at each stage  } .
nonbasic : rowboolean; { Status indicators for variables }
z0 : real; { Value of objective function }
{

it : integer; Iteration counter }

solution,

unbounded : boolean; { Iteration process term.nators }
r, s : integer; { Row and column of pivot element. }
£3,f4: cext;

PROCEDURE inputdata;
VAR 1,3 :integer;

BEGIN
FOR 1 := 1 TO m DO
BEGIN FOR J =1 TO n DO r@ad(fB,a[i,j]); read(£f3,b{i]) END:
FOR 3 := 1 TO n DO read(f3,c[j]); read(f3,z0):
FOR 1 := 1 TO m DO read(£3,basic[i]) ;

END; { Inputdata }
PROCEDURE initialise;
VAR 1,3 :integer:;

BEGIN it := 0; solution := false; unbounded := false;
FOR j := 1 TO n DO nonbasic(j] := true;
FOR i := 1 TO m DO nonbasic([basic[i]] := false:

END; { Initialise }
PROCEDURE outputtableau:
VAR i, j .integer;

BEGIN writeln (£4) ; writeln(f4," ITERATION', 1t: 2);
write{(f4,"’ BASE VAR. ", ' ' fwt~-5, 'VALUE') ;
FOR 9 := 1 TO n DO write{f4," ‘ifwe-fwi-1l, 'X', J:fwi); writeln({fd);
FOR i := 1 TO m DO
BEGIN
write(fd4, ’:B—fwi,'x',basic[i]:fwi,' ':8,b[i]): fwt:dpt) ;
FOR j := 1 TO n DO write(fd,ali,j]: fwt:dpt); writeln ({4}
END ;
write(£f4,' ‘':7,r z2v,¢ ¢ (8,20 fwt:dpt) ;
FOR j := 1 TO n DO write(fd,c[j]:fwt:dpt); writaln(f4}

END; {outputtableau }
PROCEDURE nextbasicvariable {VAR r,s: integer) ;
VAR 1, j :integer; min : real; unbounded : boolean;

BEGIN min := largevalue; { Find the variable, s, }
FOR 3 := 1 TO n DO { to enter the basis. }
IF nonbasic[j] THEN IF e[j] € min THEN BEGIN min := cljl: 8 = 3 END;
solution := afg] > - smallvalue;
IF NOT solutisn THEN
BEGIN unbounded := true; i::= 1; { Check that at least cne valus }
WHILE unbounded AND (i <= m ) DO { in column s is positive. }
BEGIN unbounded := ali,s] < smallvalue:; 1:= 4 + 1 END:;
IF NOT unbounded THEN
BEGIN min := largevalue; { Fand the variable, basic{r], }
FOR i := 1 TO m DO { to leave the basis. ¥
IF afi,s] > swmallvalue THEN
IF b{il/ali,s] < min THEN BEGIN min := blil/ali,s]; r := i END; .
nonbasic[basic{r]] := true; nonbasic{s] := false; basiclr] := s: writelni(f4);
writeln{f4," PIVOT IS AT ROW ', r:fwi, ' COL ', s:fwi)
END
END

END; { nextbasicvariable }
PROCEDURE transformtableau ( r,s: integer) ;
{ Construct the new canonical form, :mplementing }

VAR i,j :integer; pivot, savea : real ; savecol : column;

BEGIN It
FOR 12 := 1 TO m DO savacol{il := ali,s]; savec := els]; pivet = alr,s];
bBlr] := blr]/pivot;
FOR j := 1 TO n DO alr,j] := al[r,j]/pivot;

FOR i :=1 TO m DO
IF 1 <> r THEN
BEGIN b[i] := b{i] - Savecol[i] « bir]; -
FOR 3 := 1 TO h'DO%aIi,j]‘:ﬁ a[i,j] - savecol[i] * a[rx,j]

L
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END ;
FOR j: = 1 TO n DO c[j]):=
20 := z0 - savec * b[r]; it :=
END; {transformtableau }
BEGIN {Main Program }
assign(f3, 'ekoko.in'); reset(f3):
assign(f4,'outdatad.out'); rewrite(f4)
writeln(f4); writeln(f4,’
inputdata; initialise;
REPEAT
outputtableau;
nextbasicvariable(r,s) ;

‘

cl[j] - savec * alr,jl;’
it + 1

SIMPLEX METHOD'); writeln(f4) ;

IF NOT (solution OR unbounded) THEN transformtableau(r, s)

UNTIL solution OR unbounded;
{ Output results } writeln(f4):;
IF unbounded THEN writeln(f4,’

else writeln(f4,’ MAXIMUM AT 2 = ', z0:fwt:dpt);
close(f£3) ; close(fys);
END. {Simplex }
Fig. 1: Program Simplex
SIMPLEX METHOD
initial Tableau
BASEVAR.  VALUE X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X6 20000 1.00 0.00 000 000 000 100 000 000 000 0.00
X7 200.00. 0.00 100 000 000 000 000 100 000 000 0.00
X8 20000 0.00 0.00 100 000 000 000 000 100 000 0.00
X9 20000 0.00 0.00 000 100 000 000 000 000 100 0.00
X10 20000 000 000 000 000 1.00 000 000 000 000 1.00
z 0.00 500 -10.00 -5.00 10.00 -5000.00 000 000 000 000
Optimal Tableau
BASEVAR. VALUE X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X6 200.00 100 000 0.00 000 0.00 100 0.00 000 000 0.00
X2 200.00 000 100 000 000 000 000 100 000 000 0.00
X3 200.00 000 000 100 000 000 000 0.00 1.00 000 000
X8 200.00 000 000 000 100 000 0.00 0.00 000 100 0.00
X5 200.00 0.00 0.00 0.00 000 1.00 000 000 0C0 000 100
z 400000 500 000 000 1000 0.00 0.00 10.00 590 000 500
Fig. 2: Initial and Optimal Tableaux
Where X, X, -, X represent  x,.x,,.x, Xy =x =0 x, = \', =200 v, ol =200 x, ¥

respectively and Xo X, X,, represent

Xo» X5,000.X,, respectively. The slack variables of the

LP problem are X, X, .- X, for 1st, 2nd,..., 10th

linear constraints respectively.
Hence the optimal solution is given as:

VARIABLE',s:fwi, '

IS UNBOUNDED')

and the maximum total profit = - N4.000.00

5. DISCUSSION
By the theorem and as expressed in equations

8(ay) - 8(a,) the quantity ordered and the quantity sold. in
each period should be equal. This is as a result of the

0.
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requirement that there should be no initial stock and that
the periodic excess demand should be nonenegative.

The solution to the numerica!l example show that

both the ordering and selling quantities of the 1st and

- 4th periods are zero. This can be expiained from the

data in the table of the numerical illustration where in the

1st and 4th periods there are always losses since

¢ <c, with x) =x, . And during such periods it is

better not to operate the warehouse. The ordering
quantity and selling quantity are both equal to the
capacity of the warehouse in the 2nd, 3rd.and 5th
periods. This means that during periods 2, 3 and 5 the
warehouse should be operated to full capacity because

c'/ >¢,. In each of these three periods. profits are

made and the total profit ic
J=23and S.

This profit agrees with the maximum total profit obtained
from the computer implementation of the solution.

N4.000.00 for

6. CONCLUSION

The LP model of the general warehouse
preblem has 2n variables, 2# linear constraints and
2n nonnegativity constraints. By the introduction of no
initial quantity and nonnegativity excess demand as
requirements the LP model is now reduced to »
variables, n linear constraints and » nonnegativity
constraints. This reduced LP model of the modified
warehouse problem is more sparse than the LP model
of the general warehouse problem. By the advantage of
sparsity property, the computer stores only non-zero
coefficients and arithmetic calculations involving many
zeros are often more quickly done by first testing for the
presence or absence of a zero before doing the
arithmetic operations of addition, subtraction or
multiplication. And based on (i) in the theorem
(i.e. x'/ :::x/), we observed from the solution of the
numerical illustration that the warehouse should not be
operated during periods whose selling price (c'/) Is less

than ordering cost (('/) and the warehouse should be

operated to full capacity during periods whose selling
price (('/) is more than the ordering cost (c/ :
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