GLOBAL JOURNAL OF MATHEMATICAL SCIENNCES VOL. 6, NO. 2, 2007: 97 - 103

97

COPYRIGHT (C) BACHUDO SCIENCE CJ. LTD. PRINTED IN NIGERIA. ISSN 1596-6208

VON NEUMANN ARCHITECTURE AND MODERN COMPUTERS

I. 1. ARIKPO, F. U. OGBAN and I. E. ETENG

(Received 23 July 2007, Revision Accepted 31 August 2007)

ABSTRACT

Computers with von Neumann architecture are those combuters with single memory for both data and

instructions, as well as sequential execution of instructio
for data and instructions, respectively. We took a critica

ns, as against the Harvard Scheme with separate memories
| look at the original architecture as proposed by John von

Neumann. We considered an evolutionary perspective of the von Neumiann architecture, with special interest in his
greatest contribution — the Stored-Program Concept. The basic design of the von Neumann scheme at inception and
the scheme in modern computers is also discussed. We discussed the fundamental features of the von Neumann
architecture, the consequences of these characteristics. bottlenecks of this architecture, as well as ameliorative

measures included in modern computers to handle these bottlenecks.

We also presented different parallel

architectures as enhancements to the von Neumann scheme and proposed alternative architectures that will cater for
the shortcomings of the former. The von Neumann architecture remains the cornerstone of the architecture of modern
computers and a complete extinction of this architecture may not take place in the near future

KEYWORDS: von Neumann Architecture, Harvard Architecture, Evolutzn of Computers. Self-identifying Data

Architecture.
1.0 INTRODUCTION

The term von Neumann Computer has two
common meanings. Its strictest definition refers to a
specific type of computer organization, or “architecture”,
in which instructions and data are stored together in a
common memory (Lilja et al., 1998). This type of
architecture is distinguished from the Harvard
Architecture 1n which separate memories are used to
store instructions and data (Lilja et al., 1998). The term
von Neumann Computer is also used colloguially to refer
in general, to computers that execute a single sequence
of instructions, which operate on a single stream of data
values. That is. von Neumann computers are the typical
computers available today (Lilja et al., 1998).

Any discussion of computer architectures, that
is, how computers and computer systems are organized,
designed, and implemented, inevitably makes reference
tc the von Neumann architecture as a basis for
comparison. And of course this is so, since virtually
every electronic computer ever built has been rooted in
this architecture (Riley, 1¢87).

COMPUTER

2.0 THE VON NEUMANN

ARCHITECTURE

The heart of the von Neumann computer
architecture is the Central Processing Unit (CPU),
consisting of the Control Unit and the Arithmetic and
Logic Unit (ALU). The CPU interacts with a memory and
an input/output (I/O) subsystem and executes a stream
of instructions (the computer program) that process the
data stored in memory and perform 1/O operations (Lilja
et al., 1998). The key concept of the von Neumann
architecture is that data and instructions are stored in
the memory system in exactly the same way (Lilja et al.,
1998). Thus, the memory content is defined entirely by

how it is interpreted. This 1s essential, for example, for a

program compiler that translates a user-understandable
program intc the instruction stream understood by the
machine The output of the compiler (object program) is
like ordinary data. However, these data (object program)
can then be executed by the CPU as instructions.

A variety of instructions can be executed for
moving and modifying data, and for controfiing which
instructions to execute next. This entire group of
commands that the CPU understands and can react to
is called the instruction set or command set (Rosch,
1999). The instruction set together with the resources
needed for their execution is called the instruction set
architecture (ISA). The instruction execution is driven by
a periodic ciock signal. Although several substeps have
to be perfermed for. the execution of each instruction,
sophisticate ! CPU implementation technologies exist
that can cverlap these steps such that, ideally, one
instruction can be executed per clock cycle (Rosch,
1999).

3.0 EVOLUTION OF THE VON NEUMANN
COMPUTER ARCHITECTURE

3.1 Computer Technology Before The Electronic

Comipuiter

{deas of an Analytical Machine to solve
computing problems date back to Charles Babbage
around 1822 with simple pegged-cytinder automata
dating back even significantly further (Randell, 1994).
Babbage cescribed four logical units for his machine
concept: meinory, input/cutput, arithmetic units, and a
decision m=chanism based on computation results. The
latter is a funaamental concept that distinguishes a
computer from its simple sequencer predecessors.
While Babbage's machine had to be constructed from
mechanical building blocks, it took almost 100 years

i. 1. Arikpo, Department of Mathematics/ Statistics and Computer Science, University of Calabar, Calabar, Nigeria
F. U. Ogban, Departmerit of Mathematics/ Statistics and Computer Science, Univr sity of Calabar, Calabar, Nigeria
1. E. Eteng, Department of Mathematics/ Statistics and Computer Science. U:.versity of Calabar. Calabar, Nigeria

98

{.{. ARIKPO. F. U. OGBAN and i. E. ETENG

pefore his ideas were realized with more advanced
technology such as electromechanical relays (e.g.. the
Bell Labs Model 1 in 1940) and vacuum tubes (e.g.,
ENIAC in 1846) (Randell, 1994).

3.2 The Birth of Electronic Computers

ENIAC. the Electronic Numerical Integrator And
Computer, is considered to be the first true general-
purpose electronic computer. It was built from 1944
through 1946 at the University of Pennsylvania’'s Moore
School of Electrical Engineering '(Stern, 1981). The
leading designers were John Presper Eckert Jr. and
John William Mauchly. ENIAC included some 18,000
vacuum tubes and 1,500 relays. -Addition and
subtraction were performed with 20 accumulators. There
also was a multinlier, a divider and square root unit.
Input and output was given in the form of punch cards.
An electronic memory was available for storing tabular
functions and numerical constants. Temporary data
produced and needed during computation could be
stored in the accumulators or punched out and later
reintroduced.

The designers expected that a problem would
be run many times before the machine had to be
reprogrammed. As a result, programs were hardwired in
the form of switches located on the faces of the various
units. This expectation, and the technological simplicity
driven by War-time needs, kept the designers from
implementing the more advanced concept of storing the
instructions in memory (Stern, 1981).

3.3 Von Neumann’s Contribution

John von Neumann was born in Hungary in
1903. A .chemical engineer and mathematician by
training, his well-respected work in the U S.A., which
was centered around physics and applied mathematics,
made him an important consultant to various U.S.
government agencies (Aspray, 1980). He became
interested in electronic . devices to speed-up the

computations of problems he faced for projects in Los '

Alamos during World War il Von Neumann learned
about ENIAC in 1944 and became a consultant to its
design team. His primary interest in this project was the
logical structure and mathematical description of the
new technology. This interest was in some contrast to
the engineering view of Eckert and Mauchly whose goal
was to establish a strong commercial base for the
electronic computer {Aspray, 1990).

The Development of EDVAC, a follow-up project
to ENIAC, began during the time that von Neumann,
Eckert, and Mauchly were actively collaborating. At this
time, substantial differences in viewpoints began to
emerge. In 1945, von Neumann wrote the paper “First
Draft of a Report on the EDVAC”, which was the first
written description of what has become to be called the

von Neumann stored-program computer concept
(Aspray, 1950).and (Godfrey and Hendry, 1993). The
EDVAC, as designed differed substantially from. this
design, evicencing the diverging viewpaints. As a result,
von Neumanr, engaged in the design of a machine of his
own at the Institute for Advanced Study at Princeton
University, referred to as the IAS computer (Godfrey and
Hendry, 1993).

3.4 The Stored-Program Concept

Given the prior technology of the Babbage
machine and ENIAC, the direct innovation of the von
Neumann concept was that programs no longer needed
to be encoced by setting mechanical switch arrays.
Instead. insiructions could be placed in memory in the
same way as data (Godfrey and Hendry, 1993). It is this

" equivalence nf data and instructions that represents the

real revolution of the von Neumann idea.

One advantage of the stored program concept
as envisioned by von Neumann was that instructions
now could be changed quickly which enabled the
computer to perform many different jobs in a short time.
However, the storage equivaience between data and
instructions. allows an even greater advantage:
programs can now be generated by other programs.
Examples of such program-generating programs include
compilers, hinkers, and loaders, which are the common
tools of a modern software environment {Godfrey and
Hendry, 1593). These tocls automate the tasks of
sottware development that previously had to be
performed manually. In enabling such tools, the
foundation was laid for the modern programming system
of today's computers.

4.0 ORGANIZATION AND OPERATION OF THE
VON NEUMANHN ARCHITECTURE

As shown in Figure 1, ideally, the heart of a computer
system with a von Neumann architecture ‘is the CPU.
This component fetches. (i.e, reads) instructions and
data from the main memory and coordinates the
complete execution of each instruction. It is typically
organized intc two separate subunits” the Arithmetic and
Logic Unit (ALU), and the control unt The ALU
combines -and " transforms data using arithmetic
pperations. such as addition, subtraction, multiplication,
and division. and logical operations, such as bit-wise
negation. AMD, and OR. The control unit interprets the
instructions fetched from the memory and coordinates

_the operation of the entire system. It determines the’

order in which instructions are executed and provides. all
of the electrical signals necessary to control the
operation of the ALU. and the interfaces to the other
system components.

YO NEUMANN ARCHITECTURE AND MODERN COMPUTERS ”99

CPU

o

R ————

Conteol Ut &

, r
! N

A0 Upgts

Memaory }__*

" ermrm— -

[)

A4

ALl

Figure 1: The original von Neumann architecture (Source: Lijja et al., 1998)

Input
Keyboard, mouse. ..

Scanner

Digital camera

Input/Output
units

Modem, ISDN
Sound card, MIDI

Video, TV cards

Output
Screen

‘Printer

~{Working storage

SD-RAM
DRR-RAM

Rambus

Paermanent storage

» Hard disk
CD-ROM etc.
Qiher drive types

Figure 2: The von Neumann architecture in modern computers (Source: Lilja et al., 1998)

The memory is a collection of storage cells,
each of which can be in one of two different states. One
state represents a value of “0”, and the other state
represents a value of “1". By distinguishing these two
different logical states, each cell is capable of storing a
single binary digit, or bit, of information. These bit
storage cells are logically organized into words, each of
which is b bits wide. Each word is assigned a unique
address in the range {0....,N = 1], (Lilja et al., 1998).

The CPU identifies the word that it wants either
to read or write by storing its unique address in a special
memeory address register (MAR) — A register temporarily
stores a value within the CPU. The memory responds to
a read request by reading the value stored at the
requested address and passing it to the CPU via the
CPU-memory data bus. The value then is temporarily
stored in the memory buffer register (MBR) - also
sometimes called the memory data register — before it is
used by the control unit or ALU. For a write operation,
the CP'U stores the value it wishes to write into the MBR
and the corresponding address in the MAR. The
memory then copies the value from the MBR into the
address pointed to by the MAR (Lilja et al., 1998).

Finally, the input/output (I/O) devices interface

' the computer system with the outside world. These

devices allow programs and data to be entered into the
system and provide a means for the system to control
some type of output device. Each /O port has a unique
address to which the CPU can either read or write a
value. From the CPU's point of view, an I/O device is
accessed in a manner very similar to the way it
accesses memory. In fact, in some systems the
hardware makes it appear to the CPU that the 1O
devices are actually memory locations. This
configuration, in which the CPU sees no distinction
between memory and /O devices, is referred to as
memory-mapped W¥O. In this case, no separate /O
instructions are necessary (Rosch, 1999).

4.1 Key Features ‘ ;
Given its basic organization, computers with a
vori Neumann architecture generally share several key

features that distinguish ~ them from simple
preprogrammed (or hardwired) controllers (Myers,;
1982). » '

s Instructions and data are both stored in the
same main memory. As a result, instructions are
not distinguished from data. Similarly, different
types of data, such as a floating-point value, an
integer value, or a character code, are all

100

i. 1. ARIKPO, F. U. OGBAN and I. E. ETENG

indistinguishable. The meaning of the data is not
stored with it; rather the meaning of a particular
bit pattern stored in the memory is determined
entirely by how the CPU interprets it. An

interesting consequence of this feature is that ~

the same data stored at a given memory
location can be interpreted at different times as
either an instruction or as data. For example,
when a compiler executes, it reads the source
code of a program. written in a high-level
language, such as C++ or Pascal, and converts
it to a sequence of instructions that can be
executed by the CPU. The output of the
compiler (object code) is stored in memory like
any other type of data. However, the CPU can
now execute the compiler output data (object
code) simply by interpreting them as
instructions. Thus, the same values stored in
memory are treated as data by the compiler, but
are - subsequently treated as executable
instructions by the CPU.

Another consequence of this feature is
that each instruction must specify how it
interprets the data on which it operates. Thus,
for instance, a von Neumann architecture will
have one set of arithmetic instructions for
operating on integer values and another set for
operating on floating-point values, and so on
(Lilja et al., 1998).

The second key feature is that memory is
accessed by name (i.e., address) independent
of the bit pattern stored at each address.
Because of this feature, values stored in
memory can be interpreted as addresses as
well as data or instructions. Thus, programs can
manipulate addresses using the same set of
instructions that the CPU “uses to manipulate
data. This flexibility of how values in memory
are interpreted allows very complex,

dynamically changing patterns to be generated-

by the CPU to access any variety of data
structure regardless of the type of value being
read or written (Lilja et al., 1998).

The third major characteristic of a computer with
the von Neumann architecture is that, the order
in which a program executes its instructions is
sequential, unless that order is explicitly altered.
A special register in the CPU called the program

counter (PC) contains the address of the next

instruction in memory to be executed. After each
instruction is executed, the value in the PC is
incremented to point to the next instruction in
the sequence to be executed. This sequential
execution order can be changed by the program
itself using branch instructions (such as an IF
statement), which store a new value into the PC
register. Alternatively, special hardware can
sense some external event, such as an

interrupt, and load a new value into the PC to
cause the CPU to begin executing a new
sequence of instructions. One consequence of
this feature is that, while this scheme simplifies
the writing of programs and the design and
implementation of the CPU, it also limits the

potential performance of this architecture (Lilja
etal, 1998).-
¢ Fourthly, memory is sequentially addressed. As
a result, memory in a von Neumann computer is
one-dimensional. These are in conflict with our
programming languages. Most of the resulting
program, therefore, is generated to provide for
the mapping of multidimensional data onto the
-one-dimensioned memory and to contend with
the placement of all of the data into the same
memory (Myers, 1982).
4.2 Instruction Types in a von Neumann
Architecture
A processor’s instruction set is the collection of
all the instructions that can be executed. The individual
instructions can be classified into three basic types: data
movement, data transformation, and program control
(Lija et al., 1898). Data movement instructions simply
move data between registers or memory locations, or
between /O devices and the CPU. Data movement
insitructions are actually somewhat misnamed, since

" most move operations are nondestructive.’ That is, the

data are not actually moved but, instead, are copied
from cne location to another. Nevertheless, common
usage continues to refer to these operations as data
movement instructions. Data transformation instructions
take one or more data values as input and perform
some operation on them, such as an addition, a logical
OR, or some other arithmetic or Jogical operation, to
produce . a new value. Finally, program control
instructions can alter the flow of instruction execution
from its normal sequential order by loading a new value
into the PC. This change in the instruction execution
order can be done conditionally on the results of
previous instructions (Lilja et al., 1998).

In addition to these three basic instruction types,
more recent processors have added instructions that -
can be broadly classified as system control instructions.
These types of instructions generally are not necessary
for the correct operation of the CPU but, instead, are
used to improve its performance: For example, some
CPUs have implemented prefetch instructions that can
begin reading a location in memory even before it is
needed. A variety of other system control instructions
also can be supported by the system (VanderWiel and
Lilja, 1997). i

4.3 instruction Execution

Execution of instructions is a two-step process.
First, the next instruction to be executed, which is the
one whose address is in the program counter (PC), is
fetched from the -memory and stored in the Instruction
Register (IR) in the CPU. The CPU then executes the
instruction to produce the desired result. This fetch-
execute cycle, which is ‘called an instruction cycle, is
then repeated for each instruction in the program
(Heuring and Jordan, 1997).

tn fact, the execution of an instruction is slightly
more complex than is indicated by this simple fetch-
execute cycle. The interpretation of each instruction
actually requires the execution of several smaller
substeps called rnicrooperations. The microoperations
performed for a typical instruction execution cycle in a

VON NEUMANN ARCHITECTURE AND MODERN COMPUTERS

101

von Neumann architecture are described in the following
steps (Heuring and Jordan, 1997):

1. Fetch an instruction from memory at the

address pointed to by the Program Counter

(PC). Store this instruction in the IR.

2. Increment the value stored in the PC to point to
the next instruction in the sequence of
instructions to be executed. ;

3. Decode the instruction in the IR to determine the
operation to be performed and the addressing
modes of the operands.

4. Calculate any address values needed to
determine the locations of the source operands
and the address of the destination.

5. Read the valucs of the source operands.

5. Perform the operation specified by the op-code.

7. Store the results at the destination location.

8. Go to Step 1 to repeat this entire process for the
next instruction. ‘ ’

We will like to point out here that, not all of these
microoperations need to be performed for all types of
instructions. For instance, a conditional branch
instruction does not produce a value to be stored at a
destination address. Instead, it will foad the address of
the next instruction to be executed (i.e., the branch
target address) into the PC if the branch is to be taken.
Otherwise, if the branch is not taken, the PC is not
changed and executing this instruction has no effect.
Similarly, an instruction that has all of its operands
available in registers will not need to calculate the
addresses of its source operands.

) The time at which each microoperation can
execute is. coordinated by a periodic signal called the
CPU’s clock. Each microoperation requires one clock
period to execute. The time required to execute the
slowest of these microoperations determines ,the
minimum period of this clock, which is referred to as the
CPU's cycle time (Rosch, 1999). The reciprocal of this
time is the CPU's clock rate. The minimum possible
value of the cycle time is determined by the electronic
circuit technology used to implement the CPU. Typical
clock rates in today's CPUs (Pentium 1V, for example)

are 1.8 to 2.0 GHz, which corresponds to a cycle time of.

3.0 x10 to 3.3 x10° ns (Heuring and Jordan, 1997).

An instruction that requires all seven of these
microoperations to be executed will take seven clock
cycles to complete from the time it is fetched to the time
its final result is stored in the destination location. Thus,
the combination of the number of microoperations to be
executed for each instruction, the mix of instructions
-executed by a program, and the cycle time determine
the overall performance of the CPU (Heuring and
Jordan, 1997).

50 BOTTLENECKS OF THE VON NEUMANN
ARCHITECTURE

5.1 Memory Access Bottleneck

While the basic computer organization proposed
by von Neumann is widely used, the separation of the
memory and the CPU also has led to one of its
fundamental performance limitations, specifically, the
delay to access memory. Due to the differences in

technologies used to implement CPUs and memory
devices and to the improvements in CPU architecture
and organization, such as very deep pipelining, the cycle
time of CPUs has reduced at a rate much faster than the
time required to access memory (Feldman and Retter,
1994). As a result, a significant imbalance between the
potential performance of the CPU and the memory has
developed. Since the overall performance of the system
1s limited by its slowest component, this imbalance
presents an important performance bottleneck. This
limitation .often has been referred to as the von
Neumann bottleneck (Feldman and Retter, 1994).
However, the provision of Cache memory in the
CPU has helped to reduce the effect of this imbalance;
because, while an instruction is being executed the next
instruction can be fetched and placed in the cache in the
CPU, thus, reducing the time lag for the CPU to go far in
mermory to pick the requisite instruction (Smith, 1982).

5.2 Decode Bottleneck

The performance of computer systems based
on the von Neumann architecture is also limited by this
architecture’s “one instruction at a time” execution
paradigm. Executing multiple instructions simultaneously
using pipelining can improve performance by exploiting
parallelism among instructions. However, performance
is still limited by the decode bottleneck (Flynn, 1966)
since only one instruction can be decoded for execution
in each cycle. To allow more paralielism to be exploited,
multiple operations must be simultaneously decoded for
execution. .
However, while pipelining can improve the
performance of the CPU, it also adds substantial
complexity to its design and implementation (Hennessy
and Patterson, 1995).

6.0 PARALLELISM AS ENHANCEMENT OF VON
NEUMANN ARCHITECTURE

The sequence of instructions decoded and
executed by the CPU is referred to as an instruction
stream. Similarly, a data stream is the corresponding
sequence of operands specified by those instructions
(Flynn, 1966). Using these definitions, we consider the
following taxonomy for parallel computing systems,
taking cognizance of the fact that Single instruction
stream Single Data stream (SISD) systems are
traditional von Neumann systems: ’

6.1 Single Instruction stream Multiple Data
stream (SiMD)

In such systems, an instruction specifies a
single operation that is performed on several different
data values simultaneously. For example, the basic
operand in an SIMD machine may be an array. In this
case, an element-by-element addition of one array to
another would require a single addition instruction
whose operands are two complete arrays of the same
size. If the arrays consist of n rows and m columns, nm
total additions would be performed simultaneously.
Because of their ability to efficiently operate on large
arrays, SIMD processors often are referred to as array
processors and are frequently used in image-processing
types of applications (Flynn, 1966). ‘

102

. 1L ARIKPO, F. U. OGBAN and i. E. ETENG

6.2 Multiple Instruction stream Single Data

stream (MISD) .

In an MISD processor, each individual element
in the data stream passes through multiple instruction
execution units (Flynn, 1966). These execution units
may combine several data streams into a single stream
(by adding them together, for instance), or an execution
unit may transform a single siream of data (performing a
square root operation on each element, for instance).
The operations performed and the flow of the data
streams are often fixed, however, limiting the range of
applications for which this type of system would be
useful. MISD processors often are referred to as systolic
arrays and typically are used to execute a fixed
algorithm, such as a digital filter, on a continuous stream
of input data (Flynn, 1036, -

6.3 Multipie Instruction stream WMultiple Data

stream (MIMD)

MIMD systems often are considered to be the
‘trug” parallel computer systems (Flynn, 1966).
Message-passing parallel computer systems are
essentially independent SISD processors that can
communicate with each other by sending messages
over a specialized communication network. Each
processor maintains its own independent address space
s0 any sharing of data must be explicitly specified by the
application programmer.

We will like to point out here that, while these
parallel architectures have shown excellent potential for
improving the performance of computer systems, they
are still limited by their requirement that only
independent instructions can be executed concurrently.
For example, if a programmer or a compiler is unable to
verify that two instructions or two tasks are never
dependent upon one another, they must conservatively
be assumed to be dependent. This assumption then
forces the parallel computer system to execute them
sequentially.

6.4 Speculative Parallel Architectures
Consegquent upon the limitations of conventional
parallel systems described above, there are several
recently proposed speculative parallel architectures
(Sohi et al, 19895) which would, in this case,
aggressively assume that the instructions or tasks are
not dependent and would begin executing them in
parallel. Simuitaneous with this execution, the
processors wouid check predetermined conditions to
ensure that the independence assumption was correct
when the tasks are actually executed. If the speculation
was wrong, the processors must rollback their
processing to a non-speculative point in the instruction
execution stream. The tasks then must be re-executed
sequentially. A considerable performance enhancement
is possible, however, when the speculation is
determined to be correct. Obviously, there must be a
careful trade-off between the cost of rolling-back the
computation and the probability of being wrong.

7.0 PROPOSED ALTERNATIVE ARCHITECTURES

What we have been discussing so far has been
pure von Neumann machines with different levels of

enhancements for the resulting bottlenecks. However,
there are proposals for alternative architectures that will
not directly be based on the von Neumann scheme.

e Data Flow Approach: This proposal aims at
replacing the notion of defining computation in
terms of a seauence of discrete operations
(Sharp, 1985). This model, deeply rooted in the
von Neumann tradition. sees a program in terms
of an orderly execution of instructions as set
forth by the program. The programmer defines
.the order in which operations will take place,
and the program counter follows this order as
the CPU executes the instructions. This control
flow approach would be replaced by a data flow
model! in which the operations are executed in
an order resuiting only from the
interdependencies of the data

» Another proposal aims at avoiding the memory
access bottleneck by the use of programs that
operate on structures or conceptual units rather
than on words (which normally travel between
memory and CPU, one word at a time).
Functions are defined without naming any data,
and then these functions are combined td
produce a program. Such a functional approach
began with LISP, but had to be forced into a
conventional hardware-software environment.
New functionail programming architectures may
be developed from the ground up (Eisenbach,
1987).

e Harvard Architecture: It was developed by a
research group at Harvard University at roughly
the same time as von Neumann's group
developed the von Neumann architecture (Lilja
et al., 1898). The primary advantage of the
Harvard architecture is that it provides two
separate paths between the processor and the
memory. This separation allows both an
instruction and a data value to be transferred
simultaneously from the memory to the

processor. The ability to access both
instructions and data simultaneously is
especially important to achieving high

performance in pipelined CPUs because one
instruction can be fetching its operands from
memory at the same time a new instruction is
being fetched from memory, more so when the
"Harvard architecture provides separate
memories for data and instructions, respectively

(Lilja et ai., 1998).

While we agree with the Data Flow, structures
or conceptual units and the Harvard architecture
respectively, as alternatives to the traditional von
Neumann scheme, we offer what "we call Self-
identifying Data Architecture as an alternative.

With this proposed architecture, each cperand
in memory will carry with it some bits to identify its type.
The computer only needs to perform one operation,
such as ADD. This is all we see in a high-level
language. Since the data identifies its type, it is the
responsibility of the hardware to determine whether to

" VON NEUMARNN ARCHITECTURE AND MODERN COMPUTERS

103

perform an Integer Add, Floating-point Add, Double-
* precision, Complex, or whatever it might be. This is
unlike the von Neumann concept, in which the
instructions themselves must determine whether a set of
bits is operated upon as an integer, floating-pint,
character, or other data type.

The result of our proposed alternative
architecture will be, more complex and -expensive
hardware, but greatly simplified and shorter programs,
since the burden of type-identification will now lie with
the hardware and not program instructions. o

8.0 CONCLUSION

The fundamental ideas embodied in the
traditional von Neumann architecture have proven to be
amazingly robust. Enhancements and extensions to
these ideas have led to tremendous improvements in
the performance of computer systems over the past 60
years. Today, however, many computer researchers feel
that future improvements in computer system
performance will require the extensive use of new,
innovative techniques, such as parallel (Hwang, 1993)
and speculative execution, as well as our proposed Self-
identifying Data Architecture. Besides, complementing
software technology needs to be developed that can
lower the development costs of an ever-increasing
range of potential applications.

Nevertheless, we will like to point out that, no
matter the innovations in the near future, it is likely that
the underlying organizations of future computer systems
will continue to be based on the architecture and
concepts proposed by von Neumann and his
contemporaries.

REFERENCES

Aspray, W., 1990. John von Neumann and the Origins of
Modern Computing. The MIT Press; Cambridge,
Mass.

Eisenbach, S., 1987. Functional Programming:
Languages, Tools, and Architectures. Ellis
Horwood Limited, Chichester, England.

Feldman, James M. and Retter, Charles T., 1994.
Computer Architecture: A Designer's Text
Based on a Generic RISC. McGraw-Hill, Inc.,
"New York.

Flynn, Michael J., 1966. Very high-speed computing
systems. Proceedings of the IEEE, 54(12):1901-
1909. '

Godfrey, M. D. and Hendry, D. F., 1993. The computer
as von Neumann planned it. IEEE Annals of the .
History of Computing, 15(1):1 1-21.

Hennessy, J. L. and Patterson, D. A., 1995. Computer.
Architecture: A Quantitative Approach, Second
Edition. Morgan Kaufmann, San Mateo, CA.

Heuring, V. P. and Jordan, H. F., 1997. Computer
Systems Design and Architecture. Addison
Wesley Longman, Menlo Park, CA.

Hwang, Kai., 1993. Advanced Computer Architecture:
Parallelism, Scalability, Programmability.
McGraw-Hill, Inc., New York, NY.

“Lilja, Dévid J. and Eigenmann, R., 1998. Von Neumann

Computers. University of Minnesota and Purdue
University.

Myers, G. J., 1982. Advances in Computer Architecture.
John Wiley & Sons, New York.

Randell. Brian., 1994, The origins of computér'
programming. |EEE Annals of the History of
Computing, 16(4):6-15.

Riley, H. Norton., 1987. The von Neumann Architecture
of Computer Systems. California State
Polytechnic University, Pomona, California.

Rosch, Winn L., 1999. Hardware Bible. Que, Indiana,
USA.

Sharp, J. A., 1985. Data Flow Computing. Ellis Horwood
Limited, Chichester, England.

Smith, Alan J., 1982. Cache Memories. ACM Computing
Surveys, 14(3): 473 - 530.

Sohi, G. S., Breach, S. E. and Vijaykumar; T.N., 1995
Multiscalar processors. International
Symposium on Computer Architecture, Pages
414 - 425,

Stern, Nancy., 1981. From ENIAC to UNIVAC: An
Appraisal of the Eckert-Mauchly Computers.
Digital Press, Bedford, Mass.

vanderWiel, Steven and Lilja, David J., 1997. When
caches are not enough: Data prefetching
techniques. IEEE Computer, 30(7):23-30.

