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ABSTRACT

In this paper. two existing optimal allocation to N-person cooperaiive games are reviewed for comparison-The
Shapley Value introduced by Shapley (1953) and the Nucleolus introduced Ly Schmerdler (1969) Given the nonempty
Core of an N-person cooperative game, both optimal allocation procedures consider that one point of the Core 1s more
efficient than the other points of the Core while the approaches to choosing the efficient allocation differ Whereas
Shapley employed the marginal contribution of the players into the game to achieve his aim. Schmeidier employed the
extent of dissatisfaction to achieve his own am To choose the “best” of the optimal allocations, the Standard error
and Coefficient of Vanation of solutions were used to discriminate between the two procedures When the two
approaches were appied {0 ihe saime sets of data. the Shapley value method produced smaller standard errors and
coefficients of variation than the Nucleolus method The Shapley value approach was therefore chosen as the better
one for allocation (the value of the game) to an N-person cooperative game

KEYWORDS: Charactenstic Function Coalition. Constant Sum Game Imputation. Player Payoft Strateqy The
Core

GENERAL BACKGROUND

1.1 INTRODUCTION

Coalition formation is a key problem in automated negotiation among selif-interested players. and other
multiagent applications A coahtion of players can sometimes accomplish things that the indwvidua!l players cannot. or
can accomplish them more efficiently Motivating the players to abide by a solution requires careful analysis only
some of the solutions are stable in the sense that no group of players 1s motivated to break off and form a new
coalition This constraint has been studied extensively in cooperative game theory the set of solutions that satisty it1s
known as the Core see. for example. Comtzer and Sandholm (2006) Gaouza'lez Ih'a-  and
S nchez - Rodei’enez (2003). Ferguson (2000), Gomes (1999) and Deng and Papadimitnou (1994 Cooperative
game theory considers how to distribute income v(.\') generated by a group N to its members The Shapley Value
defined by Shapley (1953). 1s a solution that employs the marginal contribution of the player(s) to select a point in the
Core that 1s stable (more preferable) to all the players in the game see. for example. Littlechild ana Owen (19-3)
Gonza'lez: Di'az and Sa'nchez Rodri'enez (2003). Ferguson (2000) and Winston (1987) In general. how well
players in a coaltion do may depend on what nonmembers of the coalition do see. for example Bernheim et’ al
(1987). Chatterjee et al (1993). Evans (1997), Milgrom and Roberts (1996) Moreno and Wooders {1996). Okada
(1996) and Ray (1996) However, in cooperative game theory, coalition formation 1s usually studied in the context of
charactenstic function games where the utiities of the coalition members do not depend on the nonmember's action
see. for example Kahan and Rapoport (1984). Van der Linden and Verbeek (1985), Zlotkin and Rosenchein (1994).
Charnes and Kortanek (1966). Shapley (1967), Wu (1977). One way to interpret this 1s to consider the coaliion
member's utilites to be the utiities they can guarantee themselves no matter what the nonmembers do see. for
example, Aumann (1959)

The Nucleolus, defined by Schmeidler (1969), is another well-known solution to N-person cooperative game
that lexicographically maximizes the sorted vector of excess for all subsets 5« \  More formally. let an imputation

NN R, represent the income distributed to the members in N wih > v N') For each subset S ¢ \.let

i

v(N) be the revenue geriérated by the subset S of members. the excess s defined by

AN x)=x(S) - v(S). where x(8)= 1y, The sorted vector of excess 1S

i N

e(8x)e(Sx). (S, x). where m 2 ' 2such that Sy eelS v ~¢{N,,.x) Note that for

different imputations v the ordered set .\‘,.Sm....\',,, 1s 1n general different and the Nucleolus 1s one of these

mputations that maximizes this sorted vectors lexicographically see for example Schmeidler + 1969) Selymosi and
Raghavan et al (2001)
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1.2 The Philosophy of The Game ]

The philosophy of an N-person cooperative game is based on the fact that in practice, many players can play
the game at the same time and at the end of the game, players gain or suffer losses as the case may be. This type of game
includes such games like gambling with a die, business firms engaged in the production of similar products (competition),
and/or sharing the profit accruing to their business through cooperation.

A real life situation for this kind of game is given as follows. Suppose there exist three players, x,, x, and x,, say,

going for a Christmas outing, visiting their friends and relatives and at each visit a sum of money is given to them to
share. At the end of the visit, it is believed that the players must have got a huge sum of money, which will be shared

v(N)
n

among them equally. In this case, each player will receive the meah allocation ¥ = where v(N) is the total

money generated and n the number of players in the game. Due to rationality assumption inherent in human beings,
X, may feel he is the brain behind the huge sum of money given to them; that is, th

e three players visited more of x, friends and relatives and as such, it was because of his influence that they could get
such amount. We can assume that x, being a rational thinker will expect that at the end of the visit, he will receive
fairly larger amount of money than x, and x,. Similarly, if x, feels more important than x;, x, would wish to receive

more money than x, . The question then is how the money will be shared to the three players so that at the end of the

day, each player will go home satisfied. The measure of satisfaction here would be quantifiable values, in Nigeria
Currency (Naira), say.

To answer this question, we shall consider two solution concepts, the Shapley Value introduced by Shapley
(1953) and the Nucleclus introduced by Schmeidler (1959), for comparison. The basis for comparison is the fact that given
the Core for an N-person cooperative game with characteristic function, v, one point of the Core is more efficient for
allocation (fairer allocation) than other points in the Core. However, the search for the efficient allocation based on the above
two solution concepts differs. The standard error and coefficient of variation shall be used to choose the better (“best’)
optimal allocation. “Best” in this context, refers to the method that gives the minimum standard error and coefficient of
variation.

PRELIMINARIES

2.1 Cooperative Game
A cooperative game [ =(N,v) consists of a player set N ={1.2...n}and a value function v:2" — R

with v(¢) = 0. The allocation to individual player ie N is represented by x and X =(x1axp---,-x;,) satisfying

Zx,- =WN) is an allocation vector: see, for example, Ferguson (2000).
teN

2.2 The Core
Suppose an imputation, x, is being proposed as a division of the total amount due the players denoted by

v(N). If there exists a coalition, S, whose total return from x is less than what that coalition can achieve acting by

itself, that is, ifo, < v(x), then there will be a tendency for the coalition, S, to form a group and reject the proposed
X because such a coalition could guarantee each of its members more than they would receive from x Hence, the
Core of a game[" , denoted by C (r ) is defined as the set of all allocations whose excesses are non-negative.

Thatis, C(IN) = {x e R x(N)=v(N) and x(S)=v(S), VSc N } . As a solution concept, the Core presents a

set of imputations without distinguishing one point of the imputation as being preferable to another; see, for example,
Conitzer and Sandholm (2006).

In general, the Core of a game can be empty. If the Core is empty, the game is inherently unstable because no
matter what outcome is chosen, some subset of agents or coalition is motivated to pull out and form their own coalition.
However in this paper, we shall examine games of non-empty Core such that no agents or coalition is motivated to pull out;
see, for example, Conitzer and Sandholm (2006).

Again, we shall assume that all allocations in the Core are unbiased estimates of the true value (the mean).

23 Characteristic Function

The pair, G(N,v), gives the coalitional form of an N-person cooperative game, where N is the number of
players and v is a real-valued function, called the characteristic function of the game, defined on the set, S, of all
coalitions (subsets of N), and satisfying
(i) v(¢)=0, and v
(ii) if S and T are disjoint coalitions, (S~T) = ¢, then v(S)+ v(T) < w(S U T): see, for example, Ferguson (2000).
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i3
24 Payoff
A quantitative measure or satisfaction a player gats at the end of each play it s a real-valued function of the
outcome of the game; see, for example, Ferguson (2000). A real-valued function here, means quantifiable values, say
in Naira

25 Imputation

A payoff vector X = ( N s X, ) of proposed amounts to be received by the players with the understanding

that player i is to receive x, is called an imputation Thus, an imputation is an N-vector. xz(.\',.x_,,...,,\‘,, }. such that

X, 2w(i) for all i £nd Zx, :V( N ) The first condition to expect of an imputation is that no player could be
1=l

expected to receive less than what that player could obtain acting alone and a second natural condition to expect of
an imputation, x = (x,.X,.....x, }is that x > (i) for all players, i Hence an imputation is said 1o be individually

N\
rational if x > v(/) foralli=1,2 . N and group rational if Z.\; -v(N) see, for example, Ferguson (2000).
=1

26 Unstable Imputation
An imputation, X, is said to be unstable through a coalition S, if v(S) > Z\ and we say .\ is stable

otherwise: see, for example, Ferguson (2000)

2.7 The Shapley Value ‘
Shapley (1953) presented a solutnon concept to N-person cooperative games called the Shapley value. This,
he achieved by computing the value of the i' margmal contribution of the player into the-game using the formula

LD P8 v(S i) (ﬁ) 1

Ne N
N

(SN IS
N

the same meanings as highlighted earlier in this work. For any characteristic function, Lioyd Shapley showed that
there is a unique reward vector,

U (,\‘,..\',......\’\ ) satisfying the following axioms

0} Efficiency Zd),(\') “v(N),

where P_(S) and other symbols of equation (1) have

") Symmetry if 1 and | are such that v (SuAi}) =v (SuA{j}) for every coalition, S, not containing | and . then
= ¢ (v)

n) Dummy Axiom- if i is such that v (S) = v (SuA{i}) for every coalition. S not containing t.then ¢ (v)=0

v) Additivity if 1 and v are characteristic functions, then ¢ (1 +v) = ¢(u) + @$(v) where ¢(v) and

¢ (1) are functions that assign a value to each of the players in the game
Theorem 1 ( Shapley (1953))
Given any N-person cooperative game with characteristic function v there 1s a unique reward vector

X (.\',..\j,... ', ). satisfying axioms 1 — v above. The reward to the 1" player. ( x, ) 1s given by

\.Z\ P, (\)‘ v(Si) v(S) '

"

where

[S[ONTgS] oy
PoS
\ ‘ ) ’ \ "
and |S| is the number of players n S, and for N > 1, N!' = N(N - 1)  (2)(1). (0' = 1)
The value Py (S) has the following interpretation: Suppose that players 1. 2. 3 arrive in a random order that is. any of
the 3' permutations of the random arrival of 3 players
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1, 2, 3. 2, 3, 1.
1 3, 2, 3. 1. 2,
2 1, 3 3 2 1

has a 1/3! chance. Suppose that when player 1 arrives, he finds that the players in the set, S, have already arrived. If
player i forms a coalition with the plavers who are present when he arnves, player i adds v (Sui) = v (S) to the
coalition, S. The probability that when player | arrives, the players in the coalition, S, are present is Py(S). Using this
information, we compute an unbiased and efficient estimate allocation for the three players due to Shapley.

2.7 The Nucleolus

Another interesting value function for an N-person cooperative game is the Nucleolus, a concept introduced
by Schmeidler (1969): see, for example, Gonza'lez - Di'uz and Sda'nchez - Rodri'guez (2003) and Carter and
Walker (1996). Instead of applying the marginal contribution of the i" player due to Shapley to compute for an
unbiased estimate of the value of the game, we look at a given characteristic function, v, and attempt to find an

imputation, X =()"1~xg~---~x~,-), that minimizes the worst inequity. That is, we ask each coalition how dissatisfied it is

with the proposed imputation or allocation, x, and we attempt to minimize the maximum dissatisfaction: see, for
example, Derks and Kuipers (1997), Carter and Walker (1996).

In this work, we shall use some numerical examples to compute for the Shapely value and the Nucleolus and
compare the two values, as many of the research work done to compute the Nucteolus were mere theoretical works
that has no numerical computation.

3 METHODS AND APPLICATIONS

3.1 Some Applicable Examples

Example 1 (Ferguson (2000)): Consider the three-person game with players 1, 2 and 3, each with two pure strategies
and payoff matrices.

If Player 1 chooses strategy a, we have Matrix 1.

S JE— _.,mMa‘r‘x 1 I —
Player 3
Player
2 ’ a b _" '
a aaa)= (031 [(@ab=(@211 |
b (a,b,a)= (4,2 3) [ (@bb)=(1,00)
If Player 1 chooses strategy b, we have Matrix 2.
I Matrix 2 e
______ Player 3 _ e
Player . a b
2 a | (b,a,a)=(1.0,0) (ba,by= (1,1,0)
b (b,b,a)=(0.01) (b.b.b)=(0, 1, 1)

Suppose our interest is in finding the characteristic function of the game denoted by v, we have that v (¢) = 0
since the value of a null coalition denoted by ¢ is usually zero. It is easy to find the value of the grand coalition- v (1, .
2, 3) too. This is the largest sum in the eight cells of Matrices 1 and 2 which occurs in cell (a, b, a) of Matrix 1 and
which gives the total payoff, v (1, 2, 3) = 9. To find the value of the game for player 1, denoted by v (1), we compute
the payoff matrix for the winnings of player 1 against players 2 and 3. This is contained in Matrix 3.

) . Matrix 3 e
! ~ Players 2 and 3 _~_,_._
Player | | _(a.a) (a.,b) (ba)  (bb)
1 - a | o0 2 L4
' b T 1 1 f 0 J 0
\

The first and fourth columns dominate the second and third columns of matrix 3 since all the entries of the second apd
third columns are greater than or equal to the entries of the first and fourth columns. Eliminating the second and third
columns, we have the reduced matrix for the players as in Matrix 4. .
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- Matrlx 4 VU —
| Players2and3
i Player 1 i) 1
! 1 0
Theorem 2 (Thie (1979))
Consider the game with payoff Matrix 5 below.
S VU PO Matr'x 5 -
{ _Column Player |
Row Player a b |
|

l

|
I :

O S

Suppose the game in Matrix 5 has no saddle point. Leta>b,a>c. d-b,d>cora<b a<c,
d <b, d<c whiler = (a+d) - (b+c), is defined as the weight of the game Then the value of the game. v . is given by

ad - be
V= L_____) while the optimal strategies of the game denoted by X,and Y, are
r
, d-c a-bh , d-b a-c¢
r r r r
By Theorem 2, we calculate the value of the game for player 1 playing against players 2 and 3 in Matrix 4
above. Thus, v (1)=! Tofind v (2) and v (3), we make similar constructions of matrices for player 2's winnings

against players 1 and 3, and player 3's winnings against players 1 and 2 and find the values of the resulting games
in the matrix of player 2's winnings against players 1 and 3. we observe that there is a saddle point. that is maxmin =
minmax = 0 Hence. v (2) = 0. In the matrix of player 3's winnings agamnst players 1 and 2. v (3) 1s equal to ,

To find v (1. 3). say, we first construct the matrix of the sum of the winnings of players 1 and 3 playing
against player 2 This 1s done by combining the strategies for players 1 and 3 such that if players 1 and 3 choose
strategy 'a’ and player 2 chooses strategy 'a’, we add the winnings of players 1and 3 in Matrix 1 together which gives
1. Continuing in this order, we have the Matrix 6 below

) Matrix
| Player 2 ‘
: ' a b f
a.a r 1 7 j
Players ab [ 3 ' 1
| 1and 3 f b.a 1 1
1 | BT 1
The lower two rows of Matrix 6 are dominated by the second row. hence. we have the reduced Matrix 7
_Player 2

7
1

Players 1 and 3

Again, by Theorem 2. we have that v (1.3) = ;

' Similarly, we compute the matrix of players 1 and 2 playing against player 3 and the matrix of players 2 and 3
playing against player 1 Both matrices have saddle points and we find that v (1, 2) =3 and v (2 3) =2 Therefore,
the characteristic function of the game is given by the foliowing array

v (1) =% v (1,2)=3
v (¢)=0. v (2) =0, v(1.3)=52 and v (1,2 3)=9
v (3) =% v (23=2



46 P.E. CHIGBU and S.N. UDEH

3.2 The Core of a Three-person Cooperative Game
Considenng f xample 1 the imputatiors are tne points v {v.v ... v ) suchthat v <y v Y and Y,

* Y%, x. 200 x; - % Plotting these points { v .\ . v_)inthe X. Y Z cocrdinates, we have triangle ABC in Figure 1

tnstable through
N\ £

/\< v Yy

(3.0.0)

Unstable through
TRY U nstable through
vhedy

. Y
N Y Ve

..

Figure 1: The Core of the game for Example One

In Figure 1 we can also find which imputations are unstable by looking at those Coalitions whose total reward from
the imputation are less thari what they would get when they play alone Coalition (2, 3) can guarantee for itself v (2,

3) = 2 beanng in mind the charactertstic function of the game, so all points (v,.x..x. ) with x| + v, < 2 are unstable
through Coaltion (2 3) These are the points below the tine v. : x, 2 in Figure 1 Aiso, Coalion (1, 2) can

guarantee for itself v (1. 2) = 3, so that all points below and to the nght of the line v, + x, = 3 are unstable Finally,

. D
Coalition (1. 3) can guarantee for itself v (1, 3) = 7/, such that all points below the Iine x, *+ v, , are unstable.

The Core s the remaining set of points of triangle ABC in Fiqure 1 given by the shaded region This means
that at the Core. all the players are satisfied with the allocation (imputation)

3.3 Computation Using the Shapley Method

We shall recall Example 1 above and use the Shapley method to compute an untiased estimate.
Xo(v.ovev) o Core

The six different orders of entry of the players are listed along with their respective payoffs in Table 1 In the
first row, the players enter in the order 1 2 and 3 Player 1 receives

v (1) = ¥ upon entry, then player 2 receives v (1. 2) - v (1) =3 -% = ’)/2, finally player 3 recewves v (1,2, 3) ~ v
(1.2) =9 -3 =6. Each of the six rows I1s equzlly Iikely, each with probability '/, The Shapley value of the game 1s
the average of the six numbers in each of the three columns of the players in Tablet and the Table shows the
computation of the Shapley value for all the three players simultaneously
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Table1: Computation of the Value of the Game for the three players using the Sha J)Iey method for Example One

1 PLAYERS
ORDER OF ENTRY I 2 3 | TOTAL
1,23 % 2277 e 17 o
1,32 Y 672 | 2 I R
2.1,3 3 0 6 94 -
2,31 7 0 2 g 1
3.1,2 la__ l2 Yo L 8 _{‘
3.2.1 7 *la Y 9 ;
AVERAGE T Tex P [ ex ¥y | ex 1y J 9 j

Hence, the Shapley value to the game is x = (X,.X,.Y;) = (e . ¥1,,).

3.4 Computation of the Nucleolus
The first step in the computation of the Nucleolus is to choose an imputation, x < Core, arbitrarily; i.e.

X =(x,.x,.x;) € Core. On the principle that the one who yells loudest gets served first, we look first at those

coalitions, S, whose excess, for a fixed allocation, x, is the largest, then we adjust x , if possible to make this largest
excess smaller. When the largest excess has oeen made as small as possible, we concentrate on the next largest
excess, and adjust x to make it as small as possible; this will continue in this order (the process of making the largest
excess to be small) until no further improvement can be done and finally, we arrive at the Nucleolus.

Again, considering Example 1, to find the Nucleolus of the game, let x = (x,.X,.X;) be an unbiased estimate
allocation such that x, +x, +x, =9, and we compute their excesses as found in Table 2.

Table 2: Computation of the Value of the Game for the three players using the Nucleolus method for Example One

The The Value of | The excess ofthe | The vector of excesses | The vector of excesses | The Nucleolus
Coalitions | the Coalitions Coalitions with the first imputation | with the second imputation 'l g, )
(s) v (S) e= v (S) . ZX\ 3‘ 3. 3 3 /4 /4
X, Z Ve - X, | =/ o1 | =
N
X, 0 T - X, -3 /4 /|7
..... S S S B S
v, K YVaoox, 1y [ '/ "2
. R B , " R
XX, 3-x-x, -3 [ ! -1
1
S SO T Se— B RV 1 e
XX, /2 X -ox, <y ' /4 i
I B . e S -
X, 2 2- x,-x; 4 -4 i
R —_— o - — I

To gain some insight on how to compute the Nucleolus, we first consider an arbitrary point, x = (3, 3, 3) €
Core, say. As seen in Table 2. the vector of excesses is e = (-"/,, =3, /s, =3, ='/s, —4). The largest of these

excesses is -/, corresponding to coalition x;. This player will claim that he is being cheated since he has the largest
excess of -/, So, some attempt would need to be made to improve things for him by making the Value for v, td be
larger than it was in the first imputation. Since x, has the next largest excess, we keep x, constant and decrease x,
by solving

Yamx, =V2- x,

=X, -x =% (2)

Equation 1 implies that the difference between the worth of x, and x; should be % and this value should be
subtracted from x, to make the excess of x, and x, equal Using this information. will give us the next amputatuo;\, X
= (3, ", "), as in column 5 of Table 2.

At the imputation, x = (3, ''/s, '%/,), the next largest excess is at coalitions v. and v,x. The best that can
be done is to make the excesses of x,, x, and x, to be equal so that no player will complain more than the other
players and this is done by solving equations 3 and 4, simultaneously
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Yo- x, - x, =Va- v (3)

and x, + x, +x =9 4)
Rearranging equations 3 and 4, we nave

Vom X, =-x, X =X, =/ (5)

Vo-x, =%H-x, »x, -x, =V (6)

- X, =Ya—- X, > X, - X, =" (7)

and x + x,+ x; =9 ' (8)
Solving equations 5 to 8 in 3 unknown, simultaneously, gives

x, =", x, = pand v, ="

hence the imputation, x = (x,, X,, ¥, )= (/2 >'/1;.'%s) is the Nucieolus

nsiger a three-person game with characteristic function v, given by
1 v (1.2)=4,
v (¢)=0, v(2)=0 v (1,3)=3, andv (1.2 3)=8
v(3)=1, V(2 3)=5,
The Core of the game is as given in Figure 2 with vertices (7, 0, 1), (1,6, 1) and (1,0, 7)

(7.0. D

—_—
-

~ ~ O
i

X3

Unstable through
1D 3
ety

X1+ X373

Unstable through
{1.3} Unstable through
] | N
ey
X

X

(1.6.1) .5, (1.3.9) (1.0.7)

Figure 2: The Core of the game for Example Two

The value of the game using the Shapley method is X = (x,.x..x;) = ("/s. ""/s, "'ls) « Core

The value of the game using the Nucleolus method is x = (x,.x,.x,) = (/5. "'/3,. ®5) « Core

Example 3 (Ferguson (2000)) Consider the three~person game with players 1. 2 and 3, each with two pure strategies
and with payoff matrices.
If Player 1 chooses strategy a, we have Matrix 7

[ Player 3
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if Player 1 chooses strategy b. we have Matrix 8

o o o Matrix 8

( { o Player 3

| Player i ! a b ]
2 | a | (baa)=(1.24) |(bab=(103)
L | b [(bba)=(75 4) (b.b,b)=(3,2,1)

Using similar constructions to those of Example 1, we obtain the characteristic function as follows
\(1)—13 v (1,2Y=8

v (1,3)= 4, and v (1, 2,3)=16.
(3) =1 v (2 3=
The Shapley of the game is given by (‘g %6, 163/36)
by ( *'1s, *°15, V'l5) = (4.56. 6.22, 5.22).

To compare the two optimal allocation methods discussed in this work, we compute their Standard errors and
Coefficients of Variation. To do this, we shall employ the idea of variance and minimum mean square error as a
property of a gocd estimator

By an estimator of a parameter ¢ . we mean a function T of the observations (x,.....

true value (the mean Y ) in some sense. It would, of course, be ideal If there exist a function T such that, compared to
E(T-0) <E(T" 0)

(ms.e) of T is a minimum, then the estimator T is said to be a better estimator than 7' However, estimators
satisfying the criterion of minimum mean square error do not generally exist: see, for example, Rao {1973). Hence, we
shall use the restriction that the estimators should be unbiased and to choose the best of the estimators, we make use
of the fact that an unbiased estimator 7 with a minimum variance is a better estimator than any other estimator /"
Using their variances, we compute their standard errors and coefficients of variation. The values of the computations
are given in Table3.

Thus, the standard error of the game due to Shapley Value method for Example 1 is 0.1497 while the
standard error of the game due to the Nucleolus method for Example 1is 0.1963 On the other hand, the Coefficient of
Variation of the game due to Shapley Value method for Example 1 is 8.64% while it 1s 11.3% for Example 1 using the
Nucleolus method.

Similarly, for Examples 2 and 3, the standard errors of the game due to Shapley Value method are 0.1661
and 0 76 while the Coefficients of Variation of the game for this method are 10 79% and 14.37%, respectively. On the
other hand, the standard errors of the game due to Nucleolus are 0.5774 and 0.87 while the Coefficients of Variation
of the game for the Nucleolus are 37 5% and 16.32%, respectively

Yy

(0)=0v (@)=

(5.94, 5.53, 4.53) while the Nucleolus of the game is given

x, ) that is closest to the

any other statistic 77, . where E stands for expectation. that is, the mean square error

4 COMPARISON OF THE SHAPLEY VALUE AND THE NUCLEOLUS
Table 3: Comparison of the Shapley value and the Nucleolus )
o Example 1 Example2 L __Example 3
( No of The Shapley The | The Shapley The i The Shapley The
_____ players Value | Nucleolus | Value Nucleolus 1 Value Nucleolus
X, ®lre=3.29 T 33 ] 5/ = 16667 | “’7/18 =594 | ;=456 |
X “1a=279 | Ty, =258 f /3 367 | ™1,=553 | ®ly=622
T =292 | i= = 2 67 J[ “‘“/,., 4 53 | =5 22 |
.. Total 9 | s i ) 16 ]
. Mean 3 2 67 ” 5 33 533 |
Standard 0.1497 i 06774 | 076 087 |
Eror | ] .
“Coefficient | 8.6% | ss% | 1437 16 32% |
__of Variation o

Considering the results for Examples 1. 2 and 3 in Table 3, we notice that the Standard errors for the Shapley
value method are less than the Standard errors for the Nucleolus method in the three cases

Hence, the Shapley Value method is considered to be better for efficient allocation than the Nucleolus
method and indeed it is the “best” for efficient allocation on the basis of the propositions (minimum standard error and
coefficient of variation) stated earlier in this work
$ CONCLUSION
In this paper, two existing optimai solutions to N-person cooperative game, the Shapley Value and the
Nucleolus, have been reviewed. Both held the view that given the Core of an N-person cooperative game, one point of
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the Core is more efficient for allocation than other points in the Core but the approach of choosung the optimal
allocation differs. Whereas Shapley (Shapley Value method) employed the marginal contribution of -each of the
players into the game to achieve his aim, Schmeidler (Nucleolus 'method) employed the extent of dissatisfaction of
each player, to achieve his aim.

By considering the Standard error and coefficient of variation on a set of randomly generated games, we have
been able to discriminate between the two optimal allocations.

Since the standard errors and coefficients of variation using the Shapley value method are less than the
standard errors and coefficients of variation using the Nucleolus method, the Shapley Value approach is hereby
chosen as the “best” for optimal allocation in N-person cooperative games.
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