GLOBAL JOURNAL OF MATHEMATICAL SCIENNCES VOL. 7, NO. 1, 2008: 53 - 56 COPYRIGHT (C) BACHUDO SCIENCE CO. LTD. PRINTED IN NIGERIA. ISSN 1596-6208

AND ASYMPTOTIC STABILITY FOR THE RADIAL UNIQUENESS SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS

S. A. SANNI

(Received 9 January 2008; Revision Accepted 14 February 2008)

ABSTRACT

Less is known of the uniqueness for the radial solutions u = u(r) of the problem $\Delta u + f(u_+) = 0$ in R''(n > 2). $u(\rho) = 0$, u'(0) = 0, besides the cases where $\lim_{r \to \infty} u(r) = 0$; and for the cases based only on the evolution of $\frac{d}{dt} \frac{f(t)}{t}$. This paper **functions** proves f(t)and uniqueness $D_n + f(u_+) = 0$ $(r > 0), u(\rho) = 0, u'(0) = 0$ based on the assumption that $f \in C^1([0,\infty))$ and that ρ satisfies a boundedness condition. Furthermore, we prove asymptotic stability for $D_u + f(u_+) = 0$ based only on the evolution of u'(r) and $u - \phi(r) f(u)$.

KEY WORDS: Semilinear elliptic equations, Radial solutions, uniqueness, compactness, asymptotic stability

INTRODUCTION

For a = n - 1 > 1 $(n \in N)$ and any $u_0 > 0$, the problem

$$D_a := u'' + \frac{a}{r}u' = -f(u_+) \ (r > 0) \tag{1}$$

$$u(0) = u_0 \tag{2}$$

$$u'(0)=0 (3)$$

is known to have a unique solution $u \in C^2([0,\infty))$ which is positive in some interval $[0,\rho)$, provided $f \in C([0,\infty)) \cap C^1((0,\infty))$ and remains positive, or have a finite number of positive zeros and changes its sign across any of them (Kawano et al., 1988 and Tadie, 1996). This problem arises in many applications (Kwong, **1990**). For $\rho > 0$, finite or not, Tadie (1990) investigated some uniqueness conditions for the associated problem

$$D_a + f(u_{+}) = 0 (r > 0) \tag{4}$$

$$u(\rho) = u_0$$
 (5)
 $u'(0) = 0$ (6)

$$u'(0) = 0 (6)$$

based only on the evolution of the functions f(t) and $\frac{d}{dt} \frac{f(t)}{t}$.

stability for the general Matukuma equation

Instability (also for parabolic equation) of a radial solution of (1) under the assumption $n \ge 3$, f(0) = 0, $f'(0) \le 0$, $f'(t)dt \ge 0$ for some $\zeta \ge 0$, and f' subcritical at infinity is proved in Berestycki et al. (1981) and Berestycki and Lions (1983). Cabre and Capella (2004) established that every nonconstant bounded radial solution u of $-\Delta u = f(u)$ in all R^n is unstable if $n \ge 10$, where f is any C^1 nonlinearity satisfying a generic nondegeneracy condition. Their result applies in particular to every analytic and any power-like nonlinearity. For every $n \ge 11$, and f a polynomial, the authors gave an example of a nonconstant bounded radial stable solution. In the current analysis, we prove uniqueness for the problem (4) - (6) based on the assumption that $f \in C^1([0,\infty))$ (Kwong and Zhang, 1991), and that ρ satisfies a boundedness condition. Furthermore, we establish asymptotic

$$D_a + \phi(r) f(u) = 0 \tag{7}$$

based only on the evolution of u'(r) and $u \in r$) f(u) = (1) is the special case that $\phi(r) = 1$. Our proof is simple, concise and independent of the dimension. We exemplify our proof by using the example in Cabre and Capella (2004); and disprove the assertion in the paper that stable nonconstant bounded solutions are never radial for $n \le 2$. We further prove asymptotic stability for the bounded solution of the Matukuma equation for $f(u) = u^2$.

2 UNIQUENESS OF SOLUTION

Lemma 1. Suppose u has a maximum on $[0,\rho]$ If $f\in C^1([0,\tau])$, then f has a maximum on $u([0,\rho])$.

Proof Since $[0,\rho]$ is closed and bounded, it is compact. Hence the image $u([0,\rho])$ is compact, and hence closed and bounded. Therefore u has a maximum on $[0,\rho]$ (Lang. 1962). Since $f \in C^1(u[0,\rho])$, it follows that the image $f'(u([0,\rho]))$ is compact; and so closed and bounded. f' has a maximum on $u([0,\rho])$.

Theorem 1 Let $f \in C^1([0,\infty))$ and $P \le \frac{\overline{2(u+1)}}{\sqrt{\|f'(u)\|_{C(u[0,\infty])}}}$. Then the boundary value problem (4) - (6) has at most one solution

Proof. Let u and \widetilde{u} be two solutions of (4) - (6). Set $v = u - \widetilde{u}$. Then v satisfies

$$\mathbf{v''} + \frac{a}{r}\mathbf{v'} = -(f(u) - f(\widetilde{u})). \tag{8}$$

Multiplying (8) by r'' gives

$$(r^{a}v')' = -r^{a}(f(u) - f(\widetilde{u}))$$

which implies that

$$v = -r^{-a} \left[\tau^{a} \left(f(u(\tau)) - f(\widetilde{u}(\tau)) \right) d\tau \right]$$
 (9)

Therefore

$$\mathbf{v} = \int_{-\infty}^{\infty} \sigma^{-\infty} \int_{-\infty}^{\infty} \mathbf{t}^{-1} \left(f(u(\mathbf{t})) - f(\tilde{u}(\mathbf{t})) \right) d\mathbf{t} d\sigma$$

$$= \int_{-\infty}^{\infty} \sigma^{-\infty} \int_{-\infty}^{\infty} \mathbf{t}^{-1} \left(\mathbf{v} \cdot \mathbf{v} \right) ds d\mathbf{t} d\sigma$$
(10)

(10) implies that

$$\|v\| \leq \|f'(u)\|_{c,u(0,\varepsilon)} \|u-\widetilde{u}\|_{c,(0,\varepsilon)} \|\sigma^{-\alpha}\|^{2} \tau^{\alpha} d\pi d\sigma$$

$$\leq \frac{\rho^{2} \|f'(u)\|_{C[u][0,\rho]}}{2(a+1)} \|v\|_{C[u,\rho]}$$
(11)

where we have used Lemma 1 Maximizing the left side of (11) yields

$$\|v\|_{C^{-0},\rho} \leq \frac{\rho^{2} \|f'(u)\|_{C^{-u}[0,\rho]}}{2(a+1)} \|v\|_{C^{-0},\rho}$$
(12)

By the boundedness condition on ρ , (12) implies that $\|v\|_{c_0(u,y)} = 0$ i.e. u + u.

Theorem 2. (7) is asymptotically stable if any of the following conditions is satisfied

1 $u \cdot \phi(r) f(u) > 0$ and u'(r) < 0

2. $u - \phi(r) f(u) > 0$ and $u'(r) > \frac{r}{2} (u - \phi(r) f(u))$

3. $u - \phi(r) f(u) < 0$ and u'(r) > 0

4. $u - \phi(r) f(u) < 0$ and $u'(r) < \frac{r}{2} (u + \phi(r) f(u))$

Proof. Let $x_1 = u$, $x_1' = x_2$. Then (1) is equivalent to the system

$$x_1' = x, (13)$$

$$x_{2}' = -\frac{a}{r}x_{2} - \phi(r)f(x_{1}) \tag{14}$$

We choose as a Lyapunov function, $V(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2)$, which is clearly positive definite. Hence

$$V' = x_1 x_1' + x_2 x_2'$$

$$= x_1 x_2 - \frac{a}{r} x_2^2 - x_2 \phi(r) f(x_1) \text{ (using (13) and (14))}$$

$$= -\frac{a}{r} x_2 [x_2 - \frac{r}{a} (x_1 - \phi(r) f(x_1))] < 0$$
(15)

by each of the conditions 1 - 4. Thus, stability is asymptotic

Theorem 3.

- 1. For $n < 4(1+r^2) + \frac{9r^2}{4(1+r^2)}$, there exists a polynomial f which admits an asymptotically stable nonconstant bounded radial solution u of (1).
- 2.. The solution $u(r) = \sqrt{3/(1+r^2)}$ for the Matukuma's equation

$$u'' + \frac{2}{r}u' + \frac{1}{1+r^2}u^3 = 0 {16}$$

is asymptotically stable for $r > \sqrt{\sqrt{3} - 1}$.

Proof of Theorem 3(1). We consider $u(r) = (1 + r^2)^{\frac{1}{4}}$, a bounded (*** solution of solution of $-\Delta u = f(u) := ((4n - 9)u^9 + 9u^{17})/16$ (Cabre and Capella, 2004). We have

$$u'(r) = -\frac{1}{4}r(1+r^2)^{-\frac{9}{8}} < 0 \tag{17}$$

$$u - f(u) = \frac{1}{6(1+r^2)^2} \left(1 - \frac{4n-9}{16(1+r^2)^2} - \frac{9}{16(1+r^2)^2} \right) > 0$$
 (18)

for $n < 4(1+r^2) + \frac{9r^2}{4(1+r^2)}$. Hence, by the condition 1 of Theorem 2, u is asymptotically stable. Furthermore, since $4(1+r^2) + \frac{9r^2}{4(1+r^2)} > 4$, this result refutes the assertion in Cabre and Capella (2004) that stable nonconstant bounded solutions of (1) are never radial for $n \le 2$.

Proof of Theorem 3(2). Here we have

$$u'(r) = \sqrt{3}r(1+r^2)^{-\frac{1}{2}} < 0 \tag{19}$$

$$u - \phi(r)f(u) = \frac{\sqrt{3}}{(1+r^2)^{\frac{1}{2}}} \left(1 - \frac{3}{(1+r^2)^{\frac{1}{2}}}\right) > 0$$
 (20)

for $r > \sqrt{\sqrt{3} - 1}$. Thus, by the condition of Theorem 2. u is asymptotically stable

REFERENCES

- Berestycki, H. and Lions, P. -L.,1983. Nonlinear scalar field Equations I. Existence of a ground state, Arch. Rational Mech. Anal 82: 313-345.
- Berestycki, H. Lions. P -L. and Peletier, L. A., 1981. An ODE approach to the existence of positive solutions for semilinear problems in R^{Λ} , Indiana Univ. Math. J. 30: 141-157
- Cabre X and Capella, A, 2004. On the stability of radial solutions of semilinear elliptic equations in all of R^n , C. R. Acad. Sci. Paris, Ser. I, 338: 769-774.
- Kawano, N., Yanagida, E. and Yotsutani S., 1988 Existence of Positive Entire Solutions of an Emden type Elliptic Equations, Funkcial Ekvac, 31: 121-145.
- Kwong, M. K., 1990. On the Kolodner-Coffman Method for the Uniqueness Problem of Emden-Fowler BVP, ZAMP (J. of Applied Math. and Phy.), 41: 79-104.
- Kwong, M. K. and Zhang, L. 1991. Uniqueness of the Positive Solutions of $\Delta u + f(\omega) = 0$ in an Annulus, Differential and Integral Equations, 4: 583-599.
- Lang, S., 1962. Real and Functional Analysis, Springer-Verlag, New York, 580pp.
- Tadie, 1996. Subhomogeneous and Singular Quasilinear Emden Type ODE, Preprint, Copenhagen University: Preprint Nr. 11.
- Tadie, 1991. On Uniqueness Conditions for Decreasing Solutions of Semilinear Elliptic Equations, Zeitschrift 1111.

 Analysis und ihre Anwendungen, 18(105): 517-523.