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ABSTRACT

Less is known of the uniqueness for the radial solutions « = u(r) of the problem Aw+ f(u,)=0 in R"(n>2),

u(p) = 0. u'(0) = 0, besides the cases where lim __ u(r) = 0: and for the cases based only on the evolution of
the functions f@) and % —’% This paper proves uniqueness for the problém
D, + f(u,)=0(r>0),u(p) =0, u'(0) =0 based on the assumption that f € (''([0,0)) and that p satisfies a
boundedness condition. Furthermore, we prove asymptotic stability for D, + f(u,) =0 based only on the evoluti‘}on

of u'(r) and u—¢(r)f(u).
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1 INTRODUCTION

Fora=n-1>1(ne N) and anyu, > 0, the problem

D, =u"+2u'=-f(u,) (r>0) 't
u(0) = u, (2)
u'0)=0 (3)

is known to have a unique solution ue C?([0,0)) which is positive in some interval [0, o).

provided f € C([0,2)) (N C'((0.2)) and remains positive, or have a finite number of positive zeros and changes its
sign across any of them (Kawano et al., 1988 and Tadie, 1996). This problem arises in many applications (Kwong.
1990). For p > 0, finite or not, Tadie (1990) investigated some uniqueness conditions for the associated problem

D, +f(u,)=0(r>0) @)
u(p) =u, (5)
w(@=0 (6)

based only on the evolution of the functions f (/) and <4 L2

dr 1
Instability (also for parabolic equation) of a radial solution of (1) under the assumption
n>3, f(0)=0. f'(0)<0, '[ S()dt 20 for some ¢ > 0. and f subcritical at infinity is proved in Berestycki et

al. (1981) and Berestycki and Lions (1983). Cabre’ and Capella (2004) established that every nonconstant bounded

i

radial solution i of — Au = f(u) inall R" is unstable if n>10, where f is any (' nonlinearity satisfying a
generic nondegeneracy condition. Their result applies in particular to every analytic and any power-like nonlinearity.
Forevery n> 11, and f a polynomial, the authors gave an example of a nonconstant bounded radial stable solution.

In the current analysis, we prove uniqueness for the problem (4) - (6) based on the assumption that f € ( "\([0. n))
{Kwong and Zhang, 1991), and that p satisfies a boundedness condition. Furthermore, we estabhsh asymptotic
stability for the general Matukuma equation
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D, +@(r)fiu) =0 )
based only on the evolution of u'(r) and 1 . 1)t () (1) s the special case that ¢(r)= 1. Our proof 1s

simple, concise and independent of the dimension We exemplify our proof by using the example in Cabre and
Capella (2004), and disprove the assertion in the paper that stable nonconstant bounded solutions are never radial for

n< 2. We further prove asymptotic stability for the bounded solution of the Matukuma equation for _/'(u) "'

2 UNIQUENESS OF SOLUTION

Lemma 1. Suppose « has a maximum on [(). p] if feC' ([O. s ]) .then f has a maximum on u([().p]).

Proof Since [0. p] is closed and bounded. it 1s compact. Hence the image N{[O./’“ 1s compact, and hence closed
and bounded. Therefore ©/ has a maximum on [ 0. p| (Lang. 1962). Since [ ¢ ("(u[(). p]), it follows that the image
/"(u{[O. p])) is compact; and so closed and bounded. /' has a maximum on u ([O p]) ‘

Aatl)

. " . I
Theorem 1 Let / « ('(|0.0)) and £ IRAKLAPTINAT

.Then the boundary value problem (4) - (6) has at most

one solution

Proof. Let wand u be two solutions of (4) - (6). Set v = u - u. Then vsatisfies
Vi = f(u) - fQ). (8)
Muttiplying (8) by »* gives
VY ==r(fu)~- fu))

which implies that

= or L r"(‘/'(u(r)} -f('u( )})dr 9)

v [Te o [Trctan fandide

= J"n "J‘”r J‘ Fiosaydad rd e (10)

Therefore

(10) implies that
| v |<“ ,f'(u) ||l |u(|u,\|))” u I; H( o oh '[ o ‘ J’] T“(/R/O'

o ‘f (l ( u ()p
) vl e ()

where we have used Lemma 1 Maximizing the left side of (11) yields

2”/ u ,p
M ¢ 0p) = 2(a+1) vle 0.0 (12)

By the boundedness condition on . (12) imphesthat ['v( .., O ie « - u.
Theorem 2. (7)1s asymptotically stable if any of the following conditions is satisfied
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1 u () f()>0and u'(r) <0
2. u-@¢(r)fQu)>0and u'(r)> =(u - ¢(r) f(u))
3 u-¢(r)f(u)<0and u'(r)>0
4 u-@(r)f(u)<0and u'(ry< t(u- ¢(r)fiuy)

Proof. Let x, = u. x; = X,. Then (1) is equivalent to the system

X, =X, (13)
Xy = -4, —g(r) f(x) (14)

" We choose as a Lyapunov function, }"(x,.x,) = %(xf + r: ), which is clearly positive definite. Hence
V=x !
=X% X%
= XX, — 43 =X r)f(x)) (using (13) and (14))

:( - Hrf(x N <0 (15)

by each of the conditions 1 - 4 Thus. stability 1s asymptotic

Theorem 3.
1. For n <4(l+r° )+4“ 7
nonconstant bounded radial solution u of (1).

there exists a polynomiai f which admits an asymptotically stable

2. The solution u(r) = \/ 3/ + r—’s for the Matukuma's equation

P20 L3 =
uw+iu+—su =0 ‘ (16)
is asymptotically stable for r > \Ns -1

Proof of Theorem 3(1). We consider wu(r)=(l+ r’ ): a bounded ('“. soiution of solution of
~An = f(u)y=((4n - Nu" + Qu")/l6 (Cabre  and Capella, 2004). We have

u'(r)—--r(l+t ) * <0 an
u—‘/(,u)-<~--—-~;-;-(—~i";",—-~ _2 )50 (18)

Lor? 160er’y  togtery
for n <4(l +r )+ 7. Hence, by the condition 1 of Theorem 2. u is asymptotically stable. Furthermore, since
a0 +r- )+ - > 4, this result refutes the assertion in Cabre and Capella (2004) that stable nonconstant
bounded solutnons of (1) are never radial for n < 2.

Proof of Theorem 3(2). Here we have

u'(r) = V3r( +r2)'§ (19)
u-g(r)fu) = ( v ,) 0 (20)

for r > \/ﬁ —1. Thus, by the condition of Theorem 2. i is asymptotically stable.
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