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ABSTRACT

In this paper. we define the necessity for recourse to Total Variation method in digital image filtering and we
establish the existence of a refined image in the space of Bounded Variation Functions BV(Q), for a given "screen” 2
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1. PRELIMINARIES

Noise is present in virtually all signals. In some situations it is negligible, in other situations, it all but
obliterates the signal of interest. Removing unwanted noise from signals has historically been a driving force behind
the development of signal processing technology Frieden, 1975, Mersereau et al;, 1975. It continues to be a major
application for both analogue and digital processing systems.

Noise/Vibration are random background events which have to be dealt with in every system processmg real
signals. The absence or negligible presence of noise in any image processing system, facilitates pattern recognition
Frieden, 1975.

Noise/Vibration are not part of the ideal signal. They may be caused by a wide range of sources. e.g vanation
in the detector, sensitive environmental variatior.s, the discrete nature of radiation, transmission or quantization errors,
etc. Lee 1980.

1.1 THE DISCRETE SETTING
An image (signal) G, is a matrix G = (g,) 1 =i, j < n of gray level value in [0 1] G = the sum of a “perfect
world” unknown image u = (u,) 1 s i, j £ n + an additive Gaussian noise N = (N,) 1 < i, | s n, where all the N, are

independent and have mean 0 and variance "
i.e. G=u+ N (See Rudin, Osher and Fatemi. 1992 )

1.2 The Continuous Setting
An image is a bounded gray level function g: Q — [0,1] where Q is the "screen” which is usually an open
domain in R?, e.g a rectangle (0.1) x (0,1).
g(x) = Uy + Ny
where u,, = a good iImage
N, = an oscillation which we will like to remove.( See Rudin et al 1992 )
We assume that:

J-n( X)dv =0 - the mean
Q

In( XY dv o -thevariance:
[0
(is known or is computable)
This initial model is actually simplistic. An image usually has all sorts of corruptions in practice The
correct model 1s ‘
9w = AU, + N, where A is a linear operator say. from L* ( ) to LX)

An, =e*u = Ie( x =, dv=ablurorconvolutia

e 1s a non - negative constant)
1.3 Problem

Suppose that one knows the function g and an estimation of A and o s it possible to obtan a good
estimation of u? We show how to obtain the best estimation of ‘u’ in the following discussion

2. DISCUSSION

The first idea would be to compute A’ g=u+A 'n However, this is not feasible in practice The operator A is
often not invertible. or its inverse is impossible to compute For example, consider the case where Au = e*u.
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Remark
The first assertion 1s a consequence of theoram 42 The second assertion means that if a sequence of

function (u), >1 bounded in BV(Q). te sup .o i/ (€ +:Du (£2) - /' then we can extract a subsequence u,, and

there exists a function u « BV(Q) such that. as

, N
k - x, Duy -+ Duweakly --* as a measure and u, - u strongly in 1" (€2)for every p |
Theorem 4.4 (Approximation By Smooth Functions)
Let u ¢« BV (Q). then there exist a sequence (u,) n - 1 C" (Q) such that as n + r. u, +» u N

L'(Q). Du, > Duweakly *as measures, -Du, [j\'u”(.\'),(l\' > D).

5. Existence For The Total Variation Approach

We now usc the reoult of thoorems 4.1 and 4 2 to establish the existence of problem (P,)

The existence of (P,) is ensured in dimensions N = 1 or N = 2, provided the following conditions are satisfied

1 The operator A satisfies A1 = | (i.e the image of a constant function is the same function).
2. The intial data satisfies _ﬂg(.\') - fogl dyv> o’
Q
3 There exist a 1 satisfying equation (2.1) such that ]1):}](52) <
Remarks:

The first assumption is not absolutely necessary (we only need that A1 » 0), but simplifies the proof a lot. It is

obviously satisfied if A corresponds to a convolution with a kernel of integral 1 (Au = €*u, J'c - 1) (provided the

boundary effects are correctly treated)

The second assumption is needed. We observe that if the model g = Au + n is correct, then it should be satisfied

(when n is rapidly oscillating so that IA u+n=0.
9]

The third assumption implies that | = inf{|Du|(Q): u satisfies (2.1)}<=, otherwise any u in equation (2.1) is a

solution But then, the problem would be of little interest. In the general continuous setting. the existence of such a n
is not absolutely obvious

5.1 Proof of Existence

See Chambolle and Lions, 1997 We consider a minimizing sequence (Un ) n > 1 for problem (P,), of
Functions U, that all satisfies equation (2.1) and such that \Du,, (€2) >lasn » > . Such a sequence exists

because of our third assumption. We also assume that |Q| =1 in order to simplify the notations (so that in particular

LSl = Iu for every u). We show, first, that the average m, - ju,,, remains bounded This is obvious If A is the
Q )
identity, or has a continous inverse. Otherwise we can write (since A1 = 1).

2 2 N
o’ - .ﬂAu,, ~g| - 'ﬂAu“ m,+m, g ﬂA(u” m,)+m, g| sothat
QO Q 184
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L(Q) - | A, ~m,)|L’ (€2) where | 4| denotes the norm

o 2|m, - g|L*(Q) - A, - m )L (€Q)>|m, - g |
of A as a continuous operator of L%(Q). Since N = 1 or 2.

2<

and by equation (3.1)

N -1

L7(Q) = 17 () < ¢|Du,|(©)

u, Ju,, (x)dXx]

1
oo |

(5.1) lee,, - m,

(€2) remains bounded, therefore m, - _fu,, is also bounded. This implies

The total variation |Du,
19
that u, is bounded in L*(Q) by applying equation (4.1). Upon extracting a subsequence, we may assume that there

exist we L (Q)N BV () such that u, — u weakly in L? and Du, — Du weakly --* as a measure. We also have
(since A is continuous and linear)

Au, — Au. Thus by semi-continuity we get:

|Dul(€2) < liminf| D, |(€) = |

"evs

and ﬂAu(.\‘) - g(.\')'zdx <o’; IAu(.\')dx = J'g(x)dx
Q Q Q
we now introduce for t[0.1] the function u' = tu + (1-t) Jg .
Q)

We have for every t, lDu' l(Q) = |Du|(Q) <l <, J‘Au’ = _[g , and we have

[#] Q

b4

. J > o’ (by assumption) and

Q

J]Au“ -2

- [a
Q

leu' - g’z :ﬂAu - g|2 <o’ . By continuity of the map ¢ — _”Au’ —g" , there exists a t,. [0.1] such that u"
Q Q Q

satisfies equation (4.1) and ‘Du"’[(Q) < 1. Necessarily, we must have |Du'“ () = | so that =1 and u is the

solution to the problem (P,)
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