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ABSTRACT

- We adopt the approach of Vogel and Oman, 1998 and introduce a Lagrange muitiplier lbiejugba, 1985, to
obtain an appropriate discrete energy which we minimize, in order to minimize equivalently, the unwanted vibration
(noise) associated with a digitally transmitted image. An iterative algorithm is developed for this mimmization and the
convergence of the aigorithm 1s proved analytically.
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1. INTRODUCTION

An |mage is a bounded gray level function, g:Q — [0,1]. where Q is a “screen” which is usually an open
domam inR’e. g.a rectangle (0,1) x (0,1) g(x) = Au(x) + n(x), in practice, where A is a linear operator say, from L(Q)
to L? (Q). u(x) is a good image and n(x) is a vibration (noise) Rudin, Osher and Fatemi, 1992.

We would need to find the best function 1 among all possible v, satisfying:

IAU(.\') - g(x)dx =0
1) !

ﬂ.'tu(.\‘) -g(x)|=

Q

Where 0 is the mean and o is the variance. We adopt the approach of Rudin, Osher and Fatemi, 1992, who
proposed the “total variation” of the function of u as a measure of the optimality of the wmage. This criterion is

approximately the integral _ﬂ /
Q
The main advantage is that this integral can be defined for functions which have discontinuities along
hypersurfaces (in two-dimensional images. along one-dimensional curves). This is essential to get a correct
representation of the edges in an image to facilitate pattern recognition etc. ‘

The main task is to minimize the integral _ﬂV"( X)
Q

2 A DISCRETE ENERGY APPROACH TO THE MAIN TASK

dx:usatisfies(l )} ................ (P1)

We consider problem (P,) in dimension 2 and endeavour to compute a solution VWe adopt the approach of
.Vogel and Oman, 1996, 1998 We assume the existence of a Lagrange multiplier A > 0 (see lbiejugba, 1985 ) such
that (P,) is equivalent to the problem:

Mm{}Dz«su AﬂAu(.\-) —g(x)fdx}:u eBI(Y-—~- ~—~-  (P)
Q

2.1 Assumptions
@ The operator A, satisfies Al = | (i.e. the image of a constant function i1s the same function)

(i)  Theinitial data satisfies ﬂg( X)- fog dx2 0o
)
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(i) There exists a ii satisfying equation (1) such that |/ )u](Q) <

2.2 Discretization

By making all the assumptions in section 2.1 the minimizer of (P,) automatically satisfies f Au Ig see
('l «Q

Chambolle and Lions, 1997, for details#+We discretise (P;) assuming that u and g are discretised on the same square
Lattice,1,j=1,....... .........L. The functions u and g are thus approximated by the discrete matrices. .

U WU <ij<landG - (G <ij<L

The term A _[Au(.\') - g(.\')]:a’.\‘ is replaced by a term ’{Z, "(.All/'), .8 |

().
A denotes a linear operatorof ' R'" and (AU),
is the component ij of AU The discrete energy we thus need to minimize 1s

EQ) =Y (U, U |+, . U |+i3|4v),, - g

in this discrete setting. Hence

(Pa)

1/‘

2.3 Remark
Our first reaction is to minimize (P;) by the gradient method e.g CGM and ECGM (see Ibiejugba, 1985,
lbiejugba and Abiola 1985 a & b) But the strong nonlinearity of (Fj;) and moreso the derivative DE, pose serious

problems. The simplest of these problems is the nonexistence of the derivative of the absolute value |\| atx =0

[Even though we can overcome this problem by replacing M with \/ f+x° . where /1 is a small parameter, the
overall minimization process is cumbersome].

24  The Minimization Method
We adopt a method that is common in the image processing literature, (see Chambolie, 1997, Rudin et al.,

v oS - ,
1992, for example) Observe that for every xe¢ . x # ().|x| - min( , X4 ), the minimum being reached for
(1 R _‘y

3

1 vwoo |
Vo= H - we thus introduce the function f(x,v) = 5 1 3 and a new field
X 2 2
Ve tF ) Do U B )i 1o €Y (of positive real numbers)
[E2 ! o+ N

and a ner energy.

FUOIY Y., UL DU U e AR e I

I, R P | l :
=Z(;;“;J}l/“._,-1,,,| +zle(,,0, U [ gy e |¢A;ZI:I(A(/),,, L

7] -

nup

and we notice that, I /' ({/.1") - F(U/), the minimum being reached for
|

(orat+ =if U {',,) and

4l

“aety ’1/’

v,
We choose some starting values U° V° and compute for every n > 1

nun
U =argU F(UY)
And
PUocarg D FWT)
The idea is that as n becomes large, U" will converge to the minimizer of the problem (P;) This is actually true if we
slightly modify this algorithm (and the function E(U) which we minimize)
So we choose ¢ > () and introduce the convex closed set
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I .
K, =Vie<V , - and..c<V | <—=VijtinR"

(M= (L-1)xL+LxL-1)

We defineanewenergy £ ({ ) | « K F(U.V)
it is ea sy to compute [, explicitly because;

E =Y., U )+ j U, ., ~U )+ X4, .|
1Y} )

?'&:x’ +§ iflx<e
where jc(x)zmemsvslf(x.v) = <|x ifaS!xlsl
& £
e Lk
Define
i | 1. (I . |
g ()=|ev—|A—=|=ife<|x<—,=if|x <& andeif|x] 2 -
' M) ;e :

Then @, (x) is the unique value in (:EJ—:| such that j, (x) = f(x.4,(x)
£

We deduce that the unique V' € K, for which

L

E,(U)=k, FU.)= FU.V)is givenby V | =4,(x,,, - %,,) and
14 2/
V' | =0.(x, . =X,,) forevery i
Ad
"2
In this case, we set g, (/) = V. This defines a continuous function ¢ : R¥ -» K, ¢ R"

The Algorithm, now consists in computing for every n 2 1, the starting values U°, V° being chosen;
min

U"=arg.U FUV"")
and

min

V'=arg.V ek FU"V)=¢,(U")

3. Analytical Proof of the Convergence of the Numerical Algorithm for Noise Minimization
ie. U"= arg.m(in FUV"") And

V" = arg.lmin FU"V).=0_(U")

Proof

Let Iy be the vector in R™ defined by (In)ij = 1 for every 1si, <L (where N = L x L is the dimension of the space
e.g. the metric space, where U resided).

We assume that the image of a constant function is the same function That is, given the linear operator A,
A'N = |y

Conjecture
Thereexist U. V =@, (U)
suchthatas n— o, U" — U andV" — V and U is(the)minimizer of E,
Proof of Conjecture ,
Lemma 1: We claim that there exists 0 < & < /3 such that the second derivatives D, F und D], F satisty
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al, <D! ,FUV)<Bl,andal, <DL FU.V)< BI,,
for every
UeK, thatisU eR" . VeK,_ & € RY andn e RY, we have

a|¢'|2 < <D12/1/F(U»V)§:> < ,BI§|2

and
2 2
an|’ <(D} FU.V),,) < B1,,|n|
Proof (see Vogel and Oman, 1998.) We also recall the following “Poincare inequality” (in finite dimension): there exist
a constant C > 0 such that for every {€ R =R suchthat 3 & =0

(.1 Sk s Slea, =€+ Tl ~¢..,|2]

1ss,jsl Isi<l,y [REYEIA

We note that for every U,V € K, and £ € R",

/
:HL/ —gl,liﬁ + V[J{ﬁ!lfl,/ﬂ -gl._[|2]+|A§|2
2

(D}, FUVY)=X|V |

1+,
i1 2 !

P53 T L o NV L

in particular, letting m(&) = (—117) z ' , be the average of & we have (since Aly = ly)

[N}

(D FUV), ) 2| A& = A& - m(E)1,) + mE) | 2 |m(&) |- |4||E - m(E)1 |
But by equation (3.1)

|§ - m(;)Ile < CZ qgu-l./ - :/,/ |2 + |§:,/+I - ;’91

e [%)(Df,,,F(U.V) o)

Therefore |m(5)1 ~| < cJ(D,Z,,,F w.r),, ¢> (here ¢ denotes any positive constant that does not depend on
U,V ,&). Moreover, by using equation (3.1) again,

o DL FUV),, ) 2 |- m@E) |

Since Iy and £ - m(£)I,, are orthogonal we deduce that I/,‘lz < c(D,z/,, FU.b),, >

Lemma 2: Foreveryn 2|
E(U™) - E,U")2 2 (

Proof: Foreveryn 21|
D, FU". V") =0 while
(D, FU".V")V -V") 20 forevery V € K,

By Lemma1, we deduce that;
Fu".v*)=Fu".v")+(D,FlU" V")V -v")

2

Un‘l _Un 2 +|Vn—l __Vn )

. ](I ~XDWVFU" V" ™ - Wy - v v Y
[ 1]

> F(U",V”)+% yri oyl

In a similar way, we prove that

Flu™.wv=)z2 F(U”.V"")+—§-

2

Un-l __Un

Since E (U")= F(U",V"), this lemma is proved.
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Remark:

By construction, the sequence

E (U")y=FU".1"") must decrease and it is bounded from below. It goes to some constant e and

b":(Un—l)_ ES(U") > 0

Thus U -U" andV"" - V" gotozeroasn — .

Also from Lemma 1, we notice that
E, is coercive, which implies that for every c>0, the set { £, < c} is bounded in R". It is also closed and hence,

compact. Thus we may extract a subsequence U™ andfinda {/ ¢ R® suchthatas k > U™ > U
By continuity V™ =® _(U™) > ® (U).and welet V = ® (U).

We also have DF(U™, V™ ')=0 and since V™' - V™ — 0 (by lemma2)

V™' 5V, so that by continuity, D, F(U.V)=0

Proof of Conjecture: Let heR" and t>0
Letting V, = (U +th) >V ast > 0

Wehave E (U +1th) - E (U) = F(U +th.® (U +th))- F{U +V)
= (FWU +th V) - FWU V) +(FWU.V)-FU.V))
Since V, € K¢,

Hence. F(U +th.V,) - F(U.V,) =D, F(U.V,).hy+ [0 s)(D, FQU .¥)hhye

| .
y ! I/ ﬂ" h/
and J(I - .s)<D,,,,F(U,V, )h, h>dls -
= ""g Et (U +Ih)J ) [Lg((,j,,,)_z <D, F((_/,i;). Il> -0

Since h is arbitrary, D, E_(U/) - 0
4. CONCLUSION

Since k, is strictly convex -» for every {/.l/" and

O<O<LE(OU + (1 - 0F (UYi (1 O)E (L)

Unless U = U/’ it has a unique mimmizer characterized by the equation D,E = 0. We deduce that U isthe
UNIQUE MINIMIZER OF £ This achieves the proof of our CONJECTURE

By the uniqueness of this minimizer. any subsequence of (U") must converge to the same vaiue U, so that
the whole sequence U" converges to U .
Similarly, V" converges to ¥ .
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