NUMERICAL ALGORITHM FOR DIGITAL IMAGE ENHANCEMENT AND NOISE MINIMIZATION.

L. N. EZEAKO and K. R. ADEBOYE

(Received 1 August 2007; Revision Accepted 17 March 2008)

ABSTRACT

We adopt the approach of Vogel and Oman, 1998 and introduce a Lagrange multiplier Ibiejugba, 1985, to obtain an appropriate discrete energy which we minimize, in order to minimize equivalently, the unwanted vibration (noise) associated with a digitally transmitted image. An iterative algorithm is developed for this minimization and the convergence of the algorithm is proved analytically.

KEY WORDS: Digital Image Enhancement, Noise Minimisation

1. INTRODUCTION

An image is a bounded gray level function, $g:\Omega \to [0,1]$, where Ω is a "screen" which is usually an open domain in R^2 e.g. a rectangle $(0,1) \times (0,1) = g(x) = Au(x) + n(x)$, in practice, where A is a linear operator say, from $L^2(\Omega)$ to $L^2(\Omega)$, u(x) is a good image and n(x) is a vibration (noise) Rudin, Osher and Fatemi, 1992.

We would need to find the best function u among all possible u, satisfying:

(1)
$$\begin{cases} \int_{\Omega} Au(x) - g(x)dx = 0 \\ \int_{\Omega} |Au(x) - g(x)|^2 = \sigma^2 \end{cases}$$

Where 0 is the mean and σ^2 is the variance. We adopt the approach of Rudin, Osher and Fatemi, 1992, who proposed the "total variation" of the function of u as a measure of the optimality of the image. This criterion is

approximately the integral
$$\int\limits_{\Omega} |\nabla u(x) dx|$$

The main advantage is that this integral can be defined for functions which have discontinuities along hypersurfaces (in two-dimensional images, along one-dimensional curves). This is essential to get a correct representation of the edges in an image to facilitate pattern recognition etc.

The main task is to minimize the integral
$$\left\{\int\limits_{\Omega} |\nabla u(x)| dx : u \ satisfies(1)\right\}$$
(P1)

2. A DISCRETE ENERGY APPROACH TO THE MAIN TASK

We consider problem (P_1) in dimension 2 and endeavour to compute a solution. We adopt the approach of Vogel and Oman, 1996, 1998. We assume the existence of a Lagrange multiplier $\lambda > 0$ (see Ibiejugba, 1985.) such that (P_1) is equivalent to the problem:

$$Min\left\{ \left| Du \right| (\Omega + \lambda \int_{\Omega} \left| Au(x) - g(x) \right|^2 dx \right\}; u \in B\Gamma(\Omega) - - - - - - (P_2)$$

2.1 Assumptions

(i) The operator A, satisfies AI = I (i.e. the image of a constant function is the same function)

(ii) The initial data satisfies
$$\iint_{\Omega} g(x) - f_{\Omega} g \Big|^2 dx \ge \sigma^2$$

(iii) There exists a \bar{u} satisfying equation (1) such that $|Du|(\Omega) < \infty$

2.2 Discretization

By making all the assumptions in section 2.1 the minimizer of (P₂) automatically satisfies $\int_{\Omega} Au = \int_{\Omega} g$ see

Chambolle and Lions, 1997, for details. We discretise (P₂) assuming that u and g are discretised on the same square Lattice, i,j = 1,.....L. The functions u and g are thus approximated by the discrete matrices.

$$U = (U_n) | \le i, j \le L \text{ and } G = (G_n) | \le i, j \le L$$

The term $\lambda \int_{\Omega} |Au(x) - g(x)|^2 dx$ is replaced by a term $\lambda \sum_{i,j} |(AU)_{i,j} - g_{i,j}|^2$ in this discrete setting. Hence

A denotes a linear operator of $R^{\times} = R^{/M}$ and $(AU)_{i,j}$

is the component it of AU. The discrete energy we thus need to minimize is

$$E(U) = \sum_{i,j} (|U_{i+1,j} - U_{i,j}| + |U_{i,j+1} - U_{i,j}| + \lambda \sum_{i,j} |(AU)_{i,j} - g_{i,j}|$$
 (P3)

2.3 Remark

Our first reaction is to minimize (P_3) by the gradient method e.g. CGM and ECGM (see Ibiejugba, 1985, Ibiejugba and Abiola 1985 a & b). But the strong nonlinearity of (P_3) and moreso the derivative D_0E , pose serious problems. The simplest of these problems is the nonexistence of the derivative of the absolute value |x| at x=0

[Even though we can overcome this problem by replacing |x| with $\sqrt{\beta + x^2}$, where β is a small parameter, the overall minimization process is cumbersome].

2.4 The Minimization Method

We adopt a method that is common in the image processing literature, (see Chambolle, 1997, Rudin et al., 1992, for example) Observe that for every $x \in \Re_{\tau} x \neq 0$, $|x| = \min_{v \in \Pi} (\frac{v}{2}x^2 + \frac{1}{2v})$, the minimum being reached for

$$v = \frac{1}{|x|}$$
 we thus introduce the function $f(x,v) = \frac{vx^2}{2} + \frac{1}{2v}$ and a new field

$$V = (V_{i, \frac{1}{t-1}})_{\text{Ess}(A \subseteq I \subseteq I)} U_{......} (V_{i, \frac{1}{t-1}})_{\text{Eas}(I \subseteq I \subseteq I)} \in \Re^{(I-1)(I+I)} \text{ (of positive real numbers)}$$

and a new energy

$$F(U,V) = \sum_{i,j} \left(f \Big| (U_{i+1,j} - U_{i,j} \Big| |V_{i+\frac{1}{2},j}) + ...f(|U_{i,j+1} - U_{i,j}| |v_{i+\frac{1}{2},j}|) + \lambda \sum_{i,j} |(AU)_{i,j} - g_{i,j}|^2 \right)$$

$$=\sum_{ij}(\frac{1}{2}V_{i+\frac{1}{2},i}^{\dagger}\left|U_{i+1,j}+U_{i,j}\right|^{2}+\frac{1}{2}V_{i,j+\frac{1}{2}}\left|U_{i,j+1}-U_{i,j}\right|^{2}+.....\frac{1}{2V_{i+\frac{1}{2},i}}+\frac{1}{2V_{i,j+\frac{1}{2}}}+\lambda\sum_{i,j}\left|(AU)_{i,j}-g_{i,j}\right|^{2}$$

and we notice that, $\overset{\text{min}}{V}F(U,V)=E(U)$, the minimum being reached for

$$V_{i,\frac{1}{2},i} = \frac{1}{\left|U_{i+1,i}\right|} \frac{1}{\left|U_{i+1,j}\right|} (or at + xif U_{i+1,j} - U_{i,j})$$
 and

$$\begin{bmatrix} V_{i,i}, \frac{1}{2} & \overline{U}_{i,j+1} & \overline{U}_{i,j} \end{bmatrix}$$

We choose some starting values U^0, V^0 and compute for every $n \ge 1$

$$U'' = \arg \widetilde{U} F(U, V''^{-1})$$

And

$$V''$$
 arg $\overset{\min}{V} F(U'', V)$

The idea is that as n becomes large, Uⁿ will converge to the minimizer of the problem (P₃). This is actually true if we slightly modify this algorithm (and the function E(U) which we minimize).

So we choose $\varepsilon > 0$ and introduce the convex closed set

$$K_{\varepsilon} = \left\{ V : \varepsilon \leq V_{\frac{1}{2}} + \frac{1}{\varepsilon} \text{ and } \dots \varepsilon \leq V_{\frac{1}{2}} \leq \frac{1}{\varepsilon}, \forall i, j \right\} \text{ in } R^{M}$$

$$(M = (L-1) \times L + L \times (L-1))$$

We define a new energy $E_{i}(U) = \stackrel{\text{non}}{V} \in K_{i}F(U,V)$

It is easy to compute E_s explicitly because:

$$E_{\varepsilon} = \sum_{i,j} (j_{\varepsilon}(U_{i+1,j} - U_{i,j}) + j_{\varepsilon}(U_{i,j+1} - U_{i,j}) + \lambda \sum_{i,j} |(AU)_{i,j} - g_{i,j}|^2$$

where
$$j_{\varepsilon}(x) = \frac{1}{\varepsilon} \le v \le \frac{1}{\varepsilon} f(x, v) = \begin{cases} \frac{1}{2\varepsilon} x^2 + \frac{\varepsilon}{2} & \text{if } |x| \le \varepsilon \\ |x| & \text{if } \varepsilon \le |x| \le \frac{1}{\varepsilon} \end{cases}$$

$$\frac{\varepsilon}{2} x^2 + \frac{1}{2\varepsilon} & \text{if } |x| \ge \frac{1}{\varepsilon}$$

Define

$$\phi_{\varepsilon}(x) = \left(\varepsilon \vee \frac{1}{|x|}\right) \wedge \frac{1}{\varepsilon} = \left(\frac{1}{|x|} \text{ if } \varepsilon \leq |x| \leq \frac{1}{\varepsilon}, \frac{1}{\varepsilon} \text{ if } |x| \leq \varepsilon, \text{ and } \varepsilon \text{ if } |x| \geq \frac{1}{\varepsilon}\right)$$

Then $\phi_{\varepsilon}(x)$ is the unique value in $\left[\varepsilon, \frac{1}{\varepsilon}\right]$ such that $j_{\varepsilon}(x) = f(x, \phi_{\varepsilon}(x))$

We deduce that the unique $V \in K_{\varepsilon}$ for which

$$E_{\varepsilon}(U) = k_{\varepsilon}^{\min} F(U, \cdot) = F(U, V) \text{ is given by } V_{i + \frac{1}{2}, i} = \phi_{\varepsilon}(x_{i+1, i}) - x_{i, i} \text{ and}$$

$$V_{i, j + \frac{1}{2}} = \phi_{\varepsilon}(x_{i, j+1} - x_{i, j}) \text{ for every i, j}$$

In this case, we set $\phi_{\varepsilon}(U) = V$. This defines a continuous function $\phi_{\varepsilon}: R^{|V|} \to K_{\varepsilon} \subset R^{M}$. The Algorithm, now consists in computing for every $n \ge 1$, the starting values U^{0} , V^{0} being chosen;

$$U'' = \arg \overset{\min}{U} F(U, V''^{-1})$$

and

$$V^n = \arg_{\varepsilon} \overset{\min}{V} \in k_{\varepsilon} F(U^n, V) = \phi_{\varepsilon}(U^n)$$

3. Analytical Proof of the Convergence of the Numerical Algorithm for Noise Minimization

i.e.
$$U'' = \underset{U}{\operatorname{arg.min}} F(U, V''^{-1})$$
 And $V'' = \underset{V \in \mathcal{A}_{r}}{\operatorname{arg.min}} F(U'', V) .= \Phi_{L}(U'')$

Proof

Let I_N be the vector in \mathbb{R}^N defined by $(I_N)ij = 1$ for every $1 \le i$, $j \le L$ (where $N = L \times L$ is the dimension of the space e.g. the metric space, where U resided).

We assume that the image of a constant function is the same function. That is, given the linear operator A. $AI_N = I_N$.

Conjecture

There exist
$$\overline{U}$$
, $\overline{V} = \Phi_{-}(\overline{U})$

such that as $n \to \infty$, $U^n \to \overline{U}$ and $V^n \to \overline{V}$ and \overline{U} is (the) min imizer of E.

Proof of Conjecture

Lemma 1: We claim that there exists $0 < \alpha < \beta$ such that the second derivatives $D_{ij}^2 F$ and $D_{ij}^2 F$ satisfy

$$\alpha I_N \leq D_{UU}^2 F(U,V) \leq \beta I_N \text{ and } \alpha I_M \leq D_{UU}^2 F(U,V) \leq \beta I_M$$

for every

 $U \in K_s$ that is $U \in R^N$, $V \in K_s$, $\xi \in R^N$ and $\eta \in R^M$, we have

$$\alpha |\xi|^2 \leq \langle D_{\ell'\ell'}^2 F(U,V)_{\xi\xi} \rangle \leq \beta |\xi|^2$$

and

$$\alpha |\eta|^2 \le \langle D_{vv}^2 F(U,V)_{\eta\eta} \rangle \le \beta I_M |\eta|^2$$

Proof (see Vogel and Oman, 1998.) We also recall the following "Poincare inequality" (in finite dimension): there exist a constant C > 0 such that for every $\xi \in R^N = R^{LxL}$ such that $\sum \xi_{i,j} = 0$

(3.1)
$$\sum_{l \leq i,j \leq l} \left| \xi_{i,j} \right|^2 \leq C \left(\sum_{l \leq i < l,j} \left| \xi_{i+1,j} - \xi_{i,j} \right|^2 + \sum_{i,1 \leq j < l,} \left| \xi_{i,j+1} - \xi_{i,j} \right|^2 \right)$$

We note that for every $U, V \in K_s$ and $\xi \in R^N$,

$$\langle \mathcal{D}_{i,li}^{2} F(U,V)_{\xi\xi} \rangle = \sum_{i,j} \left(V_{i+\frac{1}{2},j} \left| \xi_{i+1,j} - \xi_{i,j} \right|^{2} + V_{i,j+\frac{1}{2}} \left| \xi_{i,j+1} - \xi_{i,j} \right|^{2} \right) + |A\xi|^{2}$$

$$\geq \varepsilon \sum_{i,j} \left(|\xi_{i+1,j} - \xi_{i,j}|^{2} + \left| \xi_{i,j+1} - \xi_{i,j} \right|^{2} \right) + |A\xi|^{2}$$

In particular, letting $m(\xi) = (\frac{1}{N}) \sum_{i,j} \xi_{i,j}$ be the average of ξ we have (since Al_N = I_N)

$$\left\langle D_{UU}F(U,V)_{\xi,\xi}\right\rangle \geq \left|A\xi\right| = \left|A(\xi-m(\xi)I_N) + m(\xi)I_N\right| \geq \left|m(\xi)I_N\right| - \left|A\right|\left|\xi-m(\xi)I_N\right|.$$

But by equation (3.1)

$$\left|\xi-m(\xi)I_{N}\right|^{2}\leq c\sum_{i,j}\left(\xi_{i+1,j}-\xi_{i,j}\right)^{2}+\left|\xi_{i,j+1}-\xi i,j\right|^{2}\right)\leq \left(\frac{1}{\varepsilon}\right)\left\langle D_{i,i,j}^{2}F(U,V)_{\xi,\xi}\right\rangle.$$

Therefore $|m(\xi)I_N| \le c\sqrt{\langle D_{UU}^2F(U,V)_{\xi,\xi}\rangle}$ (here c denotes any positive constant that does not depend on U,V,ξ). Moreover, by using equation (3.1) again,

$$c\langle D_{UU}^2 F(U,V)_{\xi,\xi} \rangle \geq |\xi - m(\xi)I_N|^2$$
.

Since \mathbf{I}_N and $\xi - m(\xi)I_N$ are orthogonal we deduce that $\left|\xi\right|^2 \leq c\left\langle D_{t,t}^2 F(U,V)_{\xi,\xi}\right\rangle$.

Lemma 2: For every $n \ge 1$

$$E_{\epsilon}(U^{n-1}) - E_{\epsilon}(U^{n}) \ge \frac{\alpha}{2} (|U^{n-1} - U^{n}|^{2} + |V^{n-1} - V^{n}|^{2})$$

Proof:

For every
$$n \ge 1$$

$$D_{II}F(U'',V''^{-1})=0$$
 while

$$\langle D_{\nu} F(U'', V''), V - V'' \rangle \ge 0$$
 for every $V \in K_{\varepsilon}$

By Lemma1, we deduce that

$$F(U^{n}, V^{n-1}) = F(U^{n}, V^{n}) + \langle D_{v} F(U^{n}, V^{n}), V^{n-1} - V^{n} \rangle$$

$$+ \int_{0}^{1} (1 - t) \langle D^{2} V V F(U^{n}, V^{n} + t (V^{n-1} - V^{n})) (V^{n-1} - V^{n}), V^{n-1} - V^{n} \rangle dt$$

$$\geq F(U^{n}, V^{n}) + \frac{\alpha}{2} |V^{n-1} - V^{n}|^{2}.$$

In a similar way, we prove that

$$F(U^{n-1},V^{n-1}) \ge F(U^n,V^{n-1}) + \frac{\alpha}{2} |U^{n-1}-U^n|^2$$

Since $E_{\varepsilon}(U'') = F(U'', V'')$, this lemma is proved.

Remark:

By construction, the sequence

 $E_{\varepsilon}(U'') = F(U'',V'')$ must decrease and it is bounded from below. It goes to some constant e and $E_{\varepsilon}(U''^{-1}) - E\varepsilon(U'') \to 0$

Thus $U^{n-1} - U^n$ and $V^{n-1} - V^n$ go to zero as $n \to \infty$.

Also from Lemma 1, we notice that

 E_{ℓ} is coercive, which implies that for every c>0, the set $\{E_{\ell} \leq c\}$ is bounded in \mathbb{R}^{N} . It is also closed and hence, compact. Thus we may extract a subsequence U^{nk} and find a $\overline{U} \in \mathbb{R}^{N}$ such that as $k \to \infty$, $U^{nk} \to \overline{U}$

By continuity $V^{nk} = \Phi_{\varepsilon}(U^{nk}) \rightarrow \Phi_{\varepsilon}(\overline{U})$, and we let $\overline{V} = \Phi_{\varepsilon}(\overline{U})$.

We also have $D_UF(U^{nk}, V^{nk-1})=0$ and since $V^{nk-1}-V^{nk}\to 0$ (by lemma2)

 $V^{nk-1} \rightarrow \overline{V}$, so that by continuity, $D_i \cdot F(\overline{U}, \overline{V}) = 0$

Proof of Conjecture:

Let h∈RN and t>0

Letting $V_t = \Phi_{\varepsilon}(\overline{U} + th) \rightarrow \overline{V} \ as \ t \rightarrow 0$

We have
$$E_{\varepsilon}(\overline{U} + th) - E_{\varepsilon}(\overline{U}) = F(\overline{U} + th, \Phi_{\varepsilon}(\overline{U} + th)) - F(\overline{U} + \overline{V})$$

= $(F(\overline{U} + th, V_{\varepsilon}) - F(\overline{U}, V_{\varepsilon})) + (F(\overline{U}, V_{\varepsilon}) - F(\overline{U}, \overline{V}))$

Since $V_i \in K\varepsilon$,

$$F(\overline{U}, V_i) \ge F(\overline{U}, \overline{V})$$
, so that $E_c(\overline{U} + th) - E_c(\overline{U}) \ge F(\overline{U} + th, V_i) - F(\overline{U}, V)$

Hence,
$$F(\overline{U} + th, V_t) - F(\overline{U}, V_t) = t \langle D_t | F(\overline{U}, V_t), h \rangle + \int_{\overline{U}} (t - s) \langle D_{t,t}^2 | F(\overline{U}, V_t)h, h \rangle dt$$

and
$$\int_{0}^{1} (t-s) \langle D_{t:t}^{2} F(\overline{U}, V_{t}) h, h \rangle dt \leq \frac{\beta t^{2} |h|^{2}}{2},$$

$$= \lim_{t \to 0} \frac{E_{\varepsilon}(\overline{U} + th) - E_{\varepsilon}(\overline{U})}{2} \ge \langle D_{\varepsilon} F(\overline{U}, \overline{V}), h \rangle = 0$$

Since h is arbitrary, $D_{\ell} E_{\varepsilon}(\widetilde{U}) = 0$

4. CONCLUSION

Since E_i is strictly convex \Rightarrow for every U_iU' and

$$0 < \theta < 1, E_{\epsilon}(\theta U' + (1 - \theta)U') < \theta E_{\epsilon}(U) + (1 - \theta)E_{\epsilon}(U')$$

Unless U=U' it has a unique minimizer characterized by the equation $D_0 E = 0$. We deduce that $|\overline{U}|$ is the UNIQUE MINIMIZER OF |E|. This achieves the proof of our CONJECTURE

By the uniqueness of this minimizer, any subsequence of (Uⁿ) must converge to the same value \bar{U} , so that the whole sequence U^N converges to \bar{U} .

Similarly, V^n converges to \overline{V} .

REFERENCES

Chambolle, A. and Lions, P.L., 1997. Image Recovery Via Total Variation Minimization And Related Problems. Numer Math., 76(2)167-188.

Ibiejugba, M. A., 1985. The Ingenuity Of The Method Of Multipliers in Solving Optimization Problems. Advances In Modeling and Simulation Reviews, Vol. 1, (4): 11-22.

Ibiejugba, M. A. and Abiola, B., 1985a. On The Convergence Rate Of The Congruence Gradient Method Advances. In Modeling and Simulation Vol. 2 No. 1 pp. 47-56

Ibiejugba, M. A. and Abiola, B., 1985b. Minimization By Congruents. Advances in Modeling and Simulation, Vol.4, (2): 33-44.

- Rudin, L., Osher, S. J. and Fatemi, E., 1992. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D., 60: 259-268.
- Vogel, C. R. and Oman, M. E., 1996. Iterative Method for Total Variation Denoising. SIAM J. Sc. Comput, 17(1), 227-238.
- Vogel, C. R. and Oman, M. E., 1998. Fast, Robust Total Variation-based Reconstruction of Noisy, Blurred Images IEEE Trans. Image Process, 7(6): 813-824.