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ABSTRACT

The use of different numerical methods to evaluate Volterra's integral equations has undoubtedly
proved very effective. However, only a little effort or none at all has been made to explore the spline
approximations. In this paper, we examine the numerical solutions of Volterra's integral equations of the
second kind using cubic spline approximation method. Some numerical results are obtained for the case of
difference kernels.
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1. INTRODUCTION

The classical investigations by great mathematicians like Fredholm, Volterra, Hilbert, Tricomi,
Muskhelishvili, Mikhlin etc. on the theory of integral equations determined the success of their applications
as means of solving problems in diverse areas like the boundary value problems in mathematical physics,
the theory of elasticity, aerodynamics, to mention just a few.

As is known, only in exceptional cases are the integral equations amenable to analytic solutlons and
their uses therefore became possible and even more wide-spread only with the advent of high-speed
computer facilities.

In this paper, we are particularly concerned with the development of yet another approximation
method based on cubic spline interpolations for solving Volterra's integral equations of the second kind

_ ]’K(x,s)y(s)ds =f(x), xe[a, b) (1.1)

with difference or with degenerate kernels. We intend to conclude the investigation by comparing the
results of our numerical illustration with the solutions already obtained in Isaac (2006) using mechanical
quadrature method for solving the same example.

The justification for the choice of spline in this context is connected with its known cases of
producing qualitative approximation results and what 1s more, the effectiveness in the realization of its
algorithms in any computing device (Meinarovish et al, 1974 [a, b)).

Sphne is understood to mean a function Sm(Am,-X) which is defined and has continuous (m-1)-st
derivatives on the interval [a. b] On each segment [x . x ,,] formed by the network.

A a=xy<x <. <x,=b,
it coincides with a certain algebranc polynomial of degree not more than m

Among the known types of splines, an important role is played by the so-called cubic spline, S,(x).

It is noteworthy that its discovery (Stishkin and Subbotin, 1976) marked the beginning of intensive
development of the spline concepts, while its influence immediately extended to a wide spectrum of
physical and technical problems. One reason may be that any approximation involving the cubic spline can
usually be reduced to solving a system of linear equations with a tri-diagonal matrix having a dominant
main diagonal (Stishkin and Subbotin, 1976, Marchuk and Agushkov, 1981. Bakhvalov, 1977).

2. Cubic Spline Interpolation

The interpolation by means of cubic spline satisfies the following conditions:
- (a) S(x) is continuous and fulfills the conditions of continutty of the derivatives up to order 2 at the points
Xy, X2, ..., Xn.1, I.€. belongs to the class C*(a, b) of functions;

(b) On each of the subintervals [X;; X,,], S(x) is required to be a polynomial of degree 3, that is-
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3 )
S(X)‘:Sj(x):;aim(xi f‘x)‘: j=1v 24N (2.1)

(c)  Atthe knots {x i }?=0 . it satisfies the equality

S(x,)=f, j=12--- N
(d) The derivative S "(x) satisfies the following boundary conditions:

S'(a)~S'(b)=0 (2.2) _

The fuffilment of the above conditions is due to the fact that the spline in equation (2.1) has a
concrete form (Olayi, 2000)

(xi —X)3 (X_XH )3 +m;_1[f- mi—1(h; )2 J X;—X .

S(x)=S;(x)=m,_, +m,

6h" 6" A he
A2\y_y _ (2.3)
+mi_1[f‘.—m](h‘) ]X x; 1'
6 h,. '
where
hi =x; =X,
and

m, =s"(x,), k=12, ---,N.
The boundary conditions in (2.2) suggest that

my,=m, =0
The determination of the values of the remaining quantities m,,m,,...,m, , requires solving a system of
linear algebraic equations

Am =Hf : (2.4)
where the square matrix A of the order (N—1)x(N—1) has the form
hi+h;  h; )
—_—= —= 0 0 0
3 6
h, h, +h; hy
—= —= 0 0
6 3 6
A= 0 h_3 h; + h; 0 0 (2.5)
6 3 . |
- ' hi, hi, +h:
0 0 0 N-1 N-1 N
6 3

the rectangular matrix H of the order (N—1)x (N —1) is defined by

1 1 1 1 o
LI (L 0 ... 0 0 0
hy ( h hE] h;
1 (1 1) 1
o — e = .0 0 0
H - - h-z h2 h3 ] hoa . . « . , (2.6)
0 0 0 0 LI U S U e &
hN-I th hN hN
the vector '

f=(.f. .. .0)
is the free term, while the vector
T
m=(m,m,,....m,_,)
is the unknown. :
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Matrix A is positively defined and invertible so long as it remains symmetrical and has a dominant
main diagonal (Olayi, 2000). This means that the system of the equations in (2.4) is always solvable anc
produces accurate results with high precisions for the determination of M;,M,,...,M_,.

If the interval [a, b] is broken down into uniform knots, that is, the width hj' is constant and satisfies

the equality

h;=h.=(b_a), -
: N
then the matrices A and H are defined as
e I 0 0 0
3 6
T 2 e o0 0
A 6 3 6 07
o v 2 0 o @.7)
6. 3- .
: 1 5
0 0 0 —h" =h°
3
and
1 _ 2 1 0 0 0
h* h® h*
1 2
— — —-—— ... 0 0 0
H= h° h . aE (2.8)
0 0 0 122 1
. \ h h. h.
respectively. <

3. Application of Cubic Spline

Most known examples involving the use of spline approximations in solving Volterra's integral
equations of the second kind are limited to cases where the kernels are given in tabular form. Certainly, to
anticipate any meaningful improvement in the solution of these problems, we must be able to device
methods of handling functional kernels of arbitrary nature. We are proposing the application of the cubic
spline to approximate the values of the kemnel of the Volterra's integral equations with difference kernels

y(x) - [k(x—-s)y(s)ds =f(x), x[0; b], (3.1)
0
at the knots {xi};' _o on the interval [0, b). This gives the approximations

Kl =K(xi), =12 -, n.
To achieve this, we adapt the approximating equation in (2.3) and rewrite it in the form

K(x) =d|’(X| - X)+d21(X ~')(1—1)3 +d3l(xl —x)+d4|(x B xl"‘)3 ' (32)
where
K .- ml,“«(hz,f

¢, =2 d, -t gy = 8
wEas Oy =y = ——,

Ghl 6hl ! hl

« M
d, = WG X SXSX, j=12 N, (3.3)

)
Substituting (3.2) into equation (3.1), we obtain a system of equations in respect of

Y =y(x), i=12 -, n (y, = y(xy) =f(x,)):
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,y<x)+zj{d,,ux = %)+ 8P +dy[(x, — x,,) - S] +dy[(x, —x,) +5]+

ol Xiy
4yl %) - sif(sids = £(x)
xpanding the terms inside the brackets, it becomes clear that the use of spline to approximate difference
3mels allows us to transform the original equation into a system of integral equations with degenerate

arnels. Applying the property of separable kemels (Myskis, 1979; Hochdtadt, 1973), the system of
quations in (3.4) is further transformed into the foml

y(xi)+Z{d“[(x,—xi)3 J‘y(s)ds+3(xi-xi)2 J'sy(s)ds-i-:i-(x;—xi) Is’y(s)ds+

X1 LI X1

(3.4)

X4 X Xy-1

+ ‘jSJY(S)dS]Nzi[(Xa X;q)’ IY(S)dS (x; —x4)’ ljSY(S)dS+

+_3(Xa - X q) ‘J"s 2y(s)ds ~ ‘j'say(s) ds} +d,, [(x =X lj'y(s) ds+ lj’sy(s)ds] +.

-1 Xj-1 Xj-1 X1

+df(x - x,,) fy(s)ds— jy(s)d.S— jsy(S)dS}ﬂ(xi) (3.9)

Xj-1 Xyt Xj-s

eplacing the integrals in (3.5) with the quadrature formulas (Kopchenova and Maron, 1981)
Jus)as=(Ay, ., +Ay )b,

e obtain an expression for the computation: of the unknowns
= A0y0(d11x$ -d21x? +d:a1)(1 _du _d41x1)
'6‘171(‘111’(13 ‘d21xf +dyx, ~d,, —d,x,)

Yi= _Ej?{fi -hi {dﬂ[(xi —xi)3(A'_1yi_1 +Aiyi)+
+3(x; - x) ( ALy +A1xiyi)+ ,
+3(x ;‘Xi)( X i-1Y;-1+Aixin)+(Ai-1X?—1yi¥v+Aix?yi)]+
+d2j[3(xi - xj-l)J(AJyJ ! +A1y')— '
=3x, _xH)z(AHxi—lyl 1+AXY, )+ 3, - X ‘)(A"‘xf"y"' +A'xfy')+

(A "HVH*AnV) ( Hxi-1yi-1+Aixiy1’)] H

1

here
B, =d,(h°A, —3n2x, +3nx2 =3x* )h+d, (hA, - A, - x,yh), i=2, 3, -, n

IHustration

To demonstrate the effectiveness of the method we experiment the algorithm for the determmahon
f the numerical solutions of the equation

y(x)= "% 42 Ie(' -“ly?(s)ds , x[0.00; 0.08], (4.1)
here the exact solution is given as

y{x)=e""2(1+x). '
je partition the interval [0.00; 0.08] into four subintervals by the equidistant knotsx, = jh, where
=1.‘ 2, 3, 4 and the step-length h = 0.02.



THE SPLINE APPROXIMATION METHOD FOR VOLTERRA'S INTEGRAL EQUATIONS OF THE SECOND KIND 87
In respect of the zero approximation, we have the function y(,( X) =¢" . Hence, we determine the
values Y, =Y,(x ) and F, =Fly,(x )] where F[y(x)]= yz(xmfollows:
Yoo =1: ¥o. =1.000401; y,, =1.001601; y,, =1.003606; y,, =1.006420:
Fpo =1; F,, =1.000802; F,, =1.003205; F,, =1.007225; F,, =1.012881.
By virtue of the set of the knots x, =0.00; 0.02; 0.04; 0.06; 0.08 and the corresponding values F,

j=12 3 4 we immediately construct the relevant cubic spline as follows, bearing in mind of course,
equation (2.3) .

)3 _ 3 m .h? _x
Go(x]=S[F(y?]]=m‘_1E_xl X) +mu+([:0“_ -1 J¥_’f+

§ h -
e o C° 42)
(FOI—'—1J Lox, <x<x,j=12 3,74,
6 h I ] a\\i . X

Further, we determine the values m.. m,. m, (m, =m4,_¥0) from statement (2.4), which, in this case,
translates to the system W

hoh LI B
'3 6 mY) [h h h |F | 22
‘h 2r h | 1 1 o
6 3 6|™ 7% n Thon O
m 11F

0 E @ 3 0 0 1 “g 03

6 3 h h hAFy

or

2h h 1 2 1
6 1+§m2+gm3=_Fo1_—Foz+hFoz'
h 2h 1 2 1
gmz »r?m3 = HF“ - -HF03 4 hF“'

For the solutions of the system. we obtain the values.
m, =5.13830, m_ 346179 m, =5.26955.

thus, providing the possibility for a concrete representation of equation (4.2). In particular, on the interval
[xoz x1] the cubic spline has the form

1 .
G,(x)= 67\[6wa, +(6F.. —6F, -mh’k+mx| xe[0.00; 0.02]
This enables us to determine the value of the first approximation at the point x, = 0.02 as follows:

y.(x) = yolx,) + 2lje“2 “I6(s)ds

a

002
= @007 0], 9gt® [ g5 Glh[sFoox, + (6F., ~6F ~mnJs+ms’ Jos

I

=1.08125.
On the interval [x,; xQ]. equation (4 2) has the form

ij):é[m.h" + 6FyX, — BF,x, +(3m,x? —3m x2 — 6F., + 6F,, + mh? —m,h? Jx +

+(3m,x, — 3m,x,)x? + (m, —m,)x3]. x = [002; 0.04]
Thus, we calculate the value of the first approximation at the point x, = 0 04 as follows:
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y,(x2)=y0(x2)+2je‘“-$’) )ds—2e‘7[ f+je'sc ds]
2x

= 2% +je“"G ds+je "Gy dsJ

Applying the correspondmg limits of |ntegrat|on on the integrals under the bracket, we obtain
y,(x,)=2e°® (0.520405 + 0.0199712+ 0.01995858) = 1.12112.
On the interval [x,; X, |, equation (4.2) becomes

G,(x)= é1E[24m2h3 ~BmM,h° + BF,,%, — BF,X, + (3m;x2 — 3m,x2 — 6F,, + 6F, +

+m,h? —m;h? )+ (3m,x, —3m,x, )x? +(m, —m, x*|, x e [0.04; 0.06]
Hence, we obtain the first approximation at the point x, =0.06 as follows:

y1(6,) = yo(x, )+ 2 [e¥ “lg(s)ds = 2e‘5[e

x4

+ je“ X ds]

A 2y X, s X, , ,
= 2e‘5(e7+ e Gyls)ds + [ Gy(s)ds + Ie‘s Go(s)ds].
0 X, xp
Substituting for x,, X,, and x, inthe limits of integration, we obtain
y,(x,)=125710.

Finaily, on the interval [xj; X, ] the cubic spline equation (4.2) takes the form
G,y(x)= 615 [60th3 +6F ;X ~6Fy,X, + (6F. —3m,x2 —6F,, +mh? Jx +

+3myxx? -m,x°], xe[0.06; 0.08].
The first approximation at the point x, = 0.08 is therefore determined by the formula

y,(x.) =Y, +2je“ “I6(s)ds = 2e“[~2ﬁ+ je G,(s ds}

2e a 2x¢

s)ds + [e ‘G, (s)ds + j'e "G, (s)ds + fe ds]{
Thus, ‘
y,(x, ) =1 34040

We summarize our illustration by placing the above solutions side by side with those obtained in
Isaac (2006) by mechanical quadrature method. Better still. we arrange them tabular form as follows:

Table 4.1
"y(x) [ Exactsolution | Mechanical quadrature method Cubnc ~ spline  approximation
. 7 B o method
y(0.00) |1 00000 1 00000 " 100000
| 7(0,6“2_)"“ 106205 < 17110870 '"_'T 108125 I ;
“‘7(6‘04) s 112842 1120295 o Tvi2112 T T
y(0.08) Y1064 Ti3t308 T it2s710 T
y(O 08) 1127553 114387 o 134040 T T

5. CONCLUSION

Clearly, the results as presented in the above table reveals that the cubic spline approximation
method leads to more improved solutions than the mechanical quadrature method. What is more, it is also
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discovered that it- is much easier to implement the spline approximation method in computing devices than
the mechanical quadrature method.
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