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ABSTRACT

The Newton-Raphson and the Fisher's Scoring methods are two principal estimation methods in
generalized linear models. The Fisher's Scoring method is derived from the Newton-Raphson method by
replacing the Hessian matrix with its expected value. Most of the work done on performance of methods
have focused on the convergence criterion only. Based on a proposed unified regression model and the
logit link function, the relative performance of these methods are assessed with respect to convergence,
efficiency and goodness of fit. Iteration history, variances of parameter estimates, the deviance and the
Pearson chi-square are used as criteria of assessment. Using appropriate data ser, the claim that Newton-
Raphson method converges faster than the Fisher's Scoring method is established. It is also found that
both methods enjoy the same level of goodness of fit.

KEY WORDS:Generalized Linear Models, Newton-Raphson and Fisher's Methods, Parameter Estimation.
1.0 INTRODUCTION

The generalized linear model is a nonlinear model (Fox, 1997) and an extension of the general
linear model such that each component of the response variable y has a distribution in the exponential
family and linearization is achieved through a monotonic link function (McCullagh and Nelder, 1992). The
model has extensions like the generalized additive models (Hastie and Tibshirani, 1990) generalized
additive partially linear models (Rigby and Stasinocponhes, 2003), generalized linear mixed models (Schall,
1991, Larsen, et al, 2000). The maximum likelinood is the principal method of estimation in all generalized
linear models (McCullagh and Nelder, 1992). This is the principle upon which the Newton-Raphson and the
Fisher's scoring methods are based (McCullagh and Nelder, 1992).

Attempts have been made by several authors (McCullagh & Nelder, 1992; Knight, 2000; Schworer
and Hovey, 2004) at comparing optimization methods in gerieralized linear roadels but till date the relative
performance of these methods has not been adequately addressed. This is the mativation for the study.

McCullagh and Nelder (1992) in comparing the Newton-Raphson method and the Iterative weighted
least squares method observed that the Fisher's Scoring method is a variant of the Newton-Raphson
method. This is because the Newton-Raphson method uses the Hessian matrix while the Fisher's Scoring
method uses the expected value of the Hessian Matrix. For this reason, the Fisher's Scoring method is
referred to as quasi-Newton method. Their comparison was based on computational ease.

Knight (2000) compared the Newton-Raphson and the Fisher's scoring methods using the
convergence criterion (number of iterations). Schworer and Hovey (2004) compared the Newton-Raphson
and the Fisher's scoring algorithms with respect to convergence using the cumulative standard normal
distribution function as response probability. The inverse cumulative standard normal distribution function is
a non-canonical link function and is used in probit analysis

In this work assessment of the performance of optimization methods in generalized linear models is
extended beyond the convergence criterion to include efficiency and goodness of fit of methods. The
statistical methodology is based on a proposed unified regression model given as

r |
z, =X, IB/’J‘ +> u. b +eh . i=1.2...n (1.1)
J : -

where h (y) is a differentiable link function and A a fixed constant.
This is a model that unifies the general linear podel, general linear mixed model, generalized linear
model, generalized linear mixed model and the non linear model.

The model reduces to five special case as follows:
1. general linear model:

M. E. Nja, Department of Mathematics/Statistics. Cross River University of Technology. Calabar, Nigeria



116 M. E. NJA

VoD B e (1 1a)
s
when « 10w, =0, hMan=1. - =xv
2. generalized linear model:

R
o= Z fox, +eh'(u)
when A= ]5 u, =0

3 general linear mixed mode!:

Z"/’U +Zu'/'h te LR
when A= ], H(,U) L =)

4 generalized linear mixed modeil:
p g
s = quﬂ./ +Zu,‘bA +eh'(u)
=1 k=1
when'l A=1
5. non-linear model

I .
:Z'\‘//IB; +e: (1.1e)
2=
when A#0L H(ud=1, u =0, z;=y,

It is verified that (1.1) is a unified regression model as follows:

Proof. Itis enough to show that (1.1a) and (1 1b) are equivalent.

In general linear modeling. the link function, h(y) is an identify function (Mcuilagh and Meider 1682
Thus h{y) =1

Let R Z f . x, + ¢ (general linear model) {1
it
= 2 fx, + ¢ h'(y) (generalized linear modei)
ce

= X/f X o+(v - phu)

, , \
=> Bx, +[Zlf,x,, +e — J/f'(ﬂ..) from (1.1)
1 p 1
= Z px +elitu)
i

since E ',6;"'1/ =4 =Hy)
o= Z Bx +e,

A numerical example on a study on coronary artery disease (Koch et al 1585: as given by Stokes et
al (1995) 1s used to demonstrate the performance of these methods. Both the GENMOD and CATMOD
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procedures of the SAS software (Stokes et al, 1995) have been used to obtain the solution of the methods.
These are then assessed based on convergence, efficiency and goodness of fit.

20 ESTIMATION METHODS

Two estimation methods in generalized linear models are considered as follows:
21 Newton-Raphson Method

The Newton Raphson optimization method (Silvey, 1970) arises from the application of Taylor's
theorem on the system of equations:

vV, 1(3;8)=0 (1.2)

where | (y;B). = log f (y; B). is the log likelihood function. V , is the vector differential operator whose ith

component is !
op.
The expansion by Taylor's theorem of (1 2) yields

0=V, I(v. ) =V,I(», /f"’)+{Vi,/(y; AN B+ ") (1.3)

where Vf, is the matrix operator whose (r, s) element is

8 2
B, op.

From (1.2)
/} Z/{((H _ {‘75"/(-‘.:/1((H) } | \;. /("‘:/);u:,)

-

k) 2 ok ! : )
ﬂ( ) :ﬂtﬂ h —(V/’,/(.\',ﬁ( I)) Vﬂl(}/’,ﬁ(‘ | ) . (1A4,'
(1.4) is referred to as Newton — Raphson iterative scheme (Silvey. 1970). Vf;/(,li/ﬁ h) is called Hessian

(second derivative) matrix (McCullagh and Nelder, 1992). Convergence is established f /1" ~ 3

If the initial approximation, ' is good, V3/(1: 8"") and N7 1(v:8") will be very close. so that we

can use the initial Hessian matrix for all the iterations. This is a modification of Newton-Raphson method
(Silvey, 1970).

The gradient vector, V ,/(y:'") is based on the design matrix and is given as (McCullagh and
Nelder, 1992)

0 v -mp du
V I }’; ))= 1 K] (] 1 5
A0 Z/l, (=) dn, te

where the log likelihood function, / (Vi ) s given as
1y B =10y, 1(8)

= leog(‘" )+ v logu +(m -y )log(l— g )J
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= Z Iog(':" }+ Z[y, log i, + v, log(1—12)+ m log(l1 - u, )] (1.6)

2.2 Fisher's Scoring Method
This method makes use of the expected value of the Hessian matrix.
The method uses (McCullagh and Nelder, 1992)

(i) the gradient vector &//8f = g,UU as in Newton-Raphson give~ n 21

(ii) minus the expected Hessian matrix

Y DA T (1.7)
op.ep.

Let ﬂ = current estimate of /3
ob = an adjustment

A8 =U =580 =[-E (H)]'g
=-[E(H)]'g

The components of U (omitting the dispersion factor) are (McCullagh and Nelder, 1992)

n

gr = Z "'!(rv - /‘l)dlll xr

r=1 (1,111

og o'l | &l
o op* | aprops

og, @
op. op.ap.

| of dn ﬂ dn ¢ T;
= 1l (y ~u ) E e A Sy -
|‘ «M(\ M)D/i (H dﬂxr/;n T X, % (v y)J

' dr C
= Ny 7.\',, = = Ew XN,
= du op

Let /} - be estimate of parameter vector j at teration m
ket e

Then g =p -|op)"
- /}(H +(Am)4 Qt_u
=A%+ [EH]'g" (18)
30 ASSESSMENT CRITERIA

Model - fit statistics were used to determine goodness of fit of the method. These are the deviance
(Likelihood Ratio) and Pearson 7 . of parameter estimates vanances were used to assess the efficiency of
each method Convergence of methods was determined by iteration history (McCullagh and Nelder, 1992).

31 Efficiency
For a real parameter 6. Cramer-Rao inequality is stated (Silvey, 1970) as
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va{pjz H ("’H (19

. ALY _ . , .
The quantity, E[[a(—] ] denoted by /; was called by Fisher, the amount of information about # contained

in an observation of x (Silvey, 1970).

Thus, var(,lA}J > Il,_'

The efficiency of an estimator ,[} is then defined (Silvey, 1970) as

. /"
i) A N

. var[ﬁ] Iﬂva{i}]

q[f‘[,l}] = | = we are using min var(,&).

Generally, the Cramer-Rao inequality can be generalized by considering a vector-valued parameter |3
(i.v.ﬂ e IR’ ] In that case. the Fisher’s information is replaced by an information Matrix, B/,(sxs).

The (i. j¥h component of B,is

|
o83, | " |oboB

The diagonal elements of B, (i = j) are

oh;

The variance matrix of 3,, denoted by var(ﬂ] is

N 1 4
Var[ﬂ] 2 "Ig = B/i
" B;' is a “lower bound” for the variance matrix of an unbiased estimator of .

var[,bjz B, = var(b]— B, 20

\
ie. var[ /}J - B, 1s positive semi-definite.

3.2 The Deviance

The deviance can be obtained from the log-likelihood function. The deviance assumes a minimum
value at the point b which minimizes the discrepancy of fit (McCullagh and Nelder, 1992).
The discrepancy of fit D is given as

D=(Y-Xb(Y-Xp)

= (Y — Xby (Y — Xb)+ (Y - Xb}(Xb— XB)

=(Y - Xby(Y = XB)+ (¥ - XbY X(b- p)

When b = 3, the discrepancy D is denoted by D* and given as

D’ =(Y - Xb)(Y - \h) D*is deviance of data from arbitrary point b.



120 B : M. E. NJA

The deviance is a measure of discrepancy between an observation and the solution locus
(McCullagh and Nelder, 1992). It assumes a minimum value at the point which minimizes the discrepancy
of fit. The scaled deviance is define as:

Let 7 =fitted probabilities
McCullagh and Nelder, (1992) obtained the loglikelihood as

1(#y)= {y,logu, +(m, - y,)log(1-7,)}

= likelihood achievabie for the mode! under investigatibn.
where y is the vector of observations, m; is total number of observations in the sub group.

I(y : ¥) = maximum likelihood achievable.

= _JYi Yi
1()’ . y) is attained at the point % = ;’ because ;' is the observed proportion of success. It is
i i

estimated by the fitted probabitity .
2(#;y) =2 {y,log#, +(m, - y,)log(1- 7,)}
' 21(ir’;y) = 21[1 ; y]
m

_ ey m %
_2Z{y,logm +(m, y,)log[ m]}

1 [

D(y;7)=2(m;y)-2l(7;y)

= 22{% log 2t +(m~y, )[log b ]}
V(3 m —

i

] '

40 P-VALUE

The p - value is the smallest level of significance at which the null hypothesis can be rejected. For
the standard normal variate z, p — value is defined as follows:
P - value = prob (z < - Z.,) = prob (z > + z.,) for a one-tailed test.
For a two-tailed test
P —value = prob (z < - zc) = 0.5 - 2z, ' (1.10)
where z ;a} is the critical value of z., and z., is the calculated value of the standard normal variate

corresponding to the null hypothesis being tested.
5.0 THE MODEL

The generalized linear model is used for estimation in a categorical data setting.
Let ‘

¥, = By + Sex(i)+ ecg(j)+e, (1.11)
Ely, )= B, + Sex(i)+ecg(5)
where i=1,....n, j=1,...p
| explf, + Sex(i)+ ecg(j)] _ _exp(f, + Aisex+ Precg)
My, =F, {y P } = ; N =
1+exp[B, + sex(i)+ ecg(j)] 1+ exp(B, + B,sex + Precg)
' ¥, =Number of people from the ith sex level and the jth ecg status who have coronary artery disease.

4 = overall mean

Bo. B1. P2 are model parameters

_ Sex (i) = effect of ith level of sex

ecq (j) = effect of jth ecg status

e; = random error associated with observation y;
4, sex (i) and ecg (j) are fixed effects.
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k
Equation (1.11) can be written as v = Z B.x, +e,

where x; = value of the explanatory valuable corresponding to the ith sex level and jth ecg status. In terms
of the proposed unified regression model (Nja, 2007) the generalized knear model is given as

= Zﬂ,xu +eh' (1) where h(p) is the link function.
1=1

x; is an element of the fixed effects design matrix corresponding to the ith row and jth column. U, is an
element of the random effects design matrix, corresponding to the ith row and jth column. pB; and b, are
fixed effects and random effects parameter estimates respectively. u is the mean of the observations. e is
the random error term.

The probability that a person from the ith sex level and the jth ecg status has coronary artery
disease is modeled, using the Newton-Raphson, equ (1 4) and the Fisher's Scoring method, equ. (1.8).
Also modeled is the logit of this probability.

- -
- - N e .- 2’
Loy ‘./ bl \ A

The logit Iink function is given as
_ (), )

Logit (P}, })= log —22—

1-p(y,)

6.0 NUMERICAL EXAMPLE

The following data is based on a study on coronary artery disease (Koch et al, 1985). It is required
to model the probability of coronary artery disease, P(y,) by computing the parameter estimates [3,, B4, and
B, of the model using the methods under study. The methods of obtaining these estimates are then
assessed based on the criteria under investigation.

Table 1: Data on coronary artery disease
| Sex Ecg disease No disease Total
X X2 Yi m,
1 Female < 0.1 ST segment depression 4 11 15
2 Female 2 0.1 ST segment depression 8 10 18
3 Male < 0.1 ST segment depression 9 S 18
4 | Male 2 0.1 ST segment depression 21 6 27

Ecg = electrocardiogram
ST segment depression is used to categorise Ecg.

6.1 RESULTS

These results have been obtained using the SAS statistical software. The results and performance
assessment are shown below:

6.2 PARAMETER ESTIMATES

The parameter estimates using the logit link function (1.12) and the values for the methods are

given in the following tables.
. Newton-Raphson Method
Table 2: Estimates using Newton-Raphson Method

Parameter Estimates P-vales
Bo 1.1568 0.0042
B4 -1.2770 0.0103
B2 -1.0545 0.0342
Fisher’s Method of Scoring
Table 3: Estimates using Fisher's Method
Parameter Estimates P-vales
Bo -1.1747 0.0155
B1 1.2770 0.0103
B2 1.0545 0.0342
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6.3 CONVERGENCE
lteration history is used to determine the rate of convergence of the methods. The method that has
a fewer number of iterations is said to converge faster. The Iterations are given tables 4 and 5.

Table 4: Iteration History for Newton-Raphson Method
Iteration -2logL Intercept (Bo) Sex (B1) Ecg (B;)
0 95.89973 1.1535088 -1.272435 -1.050579
1 95.89959 1.1567728 -1.276951 -1.054495
2 95.89959 1.1567765 -1.276955 -1.0545

Fisher's Method of Scoring

Table 5 Iteration History for Fisher’s Method
Iteration -2logL Intercept (Bo) Sex (B1) Ecg (B2)
0 107.668965 0.154151 0 0
1 95992676 -1.064377 1.167830 0.944285
2 95.899664 -1.171724 1.274025 1.051569
3 95.899598 -1.174676 1.276953 1.054497

6.4 GOODNESS OF FIT

Goodness of fit is judged by the values of the deviance and Pearson x? shown in tables 6 and 7

below.
Table 6: Model Fit Statistics for Newton-Raphson Method
Deviance 0.2141
Pearson X? 0.2155
Model Fit Statistics
(Fisher's Method)
Table 7: Model Fit Statistics for Fisher’'s Method
Deviance 0.2141
Pearson X’ 02155
Efficiency

We shall use variances of parameter estimates as provided in (1.9) to measure efficiency of
methods. A smaller variance yields a higher efficiency. The data shows that there is no significant
difference in efficiency between the two methods.

Table 8: Variances of Parameter Estimates

Optimization

Method
Parameter
Parameter Estimates Variance
Ro 1.1568 0.1629
Newton - Raphson B, -1.2770 0.2480
B2 -1.0545 0.2480
Bo -1 1747 0.2356
Fisher's B, 1.2770 0.2480

Method B, 10545 0.2480
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7.0 DISCUSSION

Using the illustrative example, the values of the parameter estimates, Bo, B1, B2. Solutions of
generalized linear models have been obtained using appropriate estimation methods. These methods are
based on the maximum likelihood principles which employ the Newton-Raphson Scheme as described in
section 1.0. Due to the limitations of the Newton-Raphson method which include the hectic computation of
the Hessian matrix, an alternative quasi-Newton scheme was also used for purposes of assessing relative
performance of the methods. This is the Fisher’'s scoring method. The logit link is applied to both methods
and the solutions of the methods are given as:

9B,0p,
ﬂO =1‘15687 ﬂl = _1.2770, ﬂZ = —1_0545
Fisher's Scoring Method: g**" = g __[_( H“")];'

B, =1.1747, B, =12770, B, =1.0545

Iteration history has been used to determine rates of convergence. Newton-Raphson method
converged at the second iteration, Fisher's scoring method converged at the third. (Tables 4 and 5)
because subsequent iterations do not yield significantly different results.

For efficiency, the variances of the fixed effects estimates (Table 8) show that there is no significant
difference between the two methods. The deviance and Pearson y?, criteria were used as goodness of fit
statistics. Both methods exhibited the same level of goodness of fit.

) [
Newton-Raphson: g**" = g% _{L}
14

8.0 CONCLUSION

The Fisher's Scoring estimation method in generalized linear models is recommended against the
Newton-Raphson method if efficiency and goodness of fit are the criteria under consideration. This is
because the method uses the expected vaiue of the Hessian matrix, a condition which renders it
computationally less hectic than the Newton-Raphson method. However, where convergence is the
criterion of interest, the Newton-Raphson method is preferred. This is because it converges faster than the
Fisher's Scoring method as shown by the numerical illustration. This establishes the existing claim that
Newton-Raphson method converges faster the Fisher's Scoring method.
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