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ABSTRACT

The hypothesis x(m) # 0has the following implications
ximy=m*-am +a,#0
or
~am’ #0
However the attention of scholars have been on y(m) = m' —a,m’ +a, # 0, which implies
-1a?>00ra,—1a’ <0.
But the second condition a, —a,m’ # 0 has been given little or no attention by scholars. In this paper, an
existence result has been obtained using the alternative condition
y(my=a,—am’ 20 or m* #a,"'a,
along side with other hypotheses.
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1. INTRODUCTION

Consider the nonlinear differential equation

4) = . - o ee ae

XV + f(0)+gX)+Hi)+ax =Rt %55 ) (1)
with boundary conditions

DY"’x(0)= D'"'x(2x), r =0,1.2,3, D =:iaL (2)

t

where @, isaconstart, /= f(X), g=g(X), h=Hx), P=Pt,x,x,X,X) are continuous functions with
P 2 periodicin 1.

In a special case, consider the constant coefficients equation

X +a¥ +ai+ax+ax=0 - (3)
with the corresponding nonhomogeneous equation
X +a¥ +ai+ax+ax=Plx,%5X) (4)

both (3) and (4) subject to the boundary condition (2). The auxiliary equation

r‘+ar*+a,r’ +ar+a, =0
of (3) has a root of the form r = im (m an integer) if the equation

m' —a,m’ +a, =0 and m(a, -am’)=0 (5)
are satisfied simultaneously Ezello (1979). The boundary value problem (3) — (2) has no nontrivial solutions
if either

2(m)=ni' —anf +a,#0 (6)
or o

a,—ant z0orm’ 2a'a, %)

The equatxon (6) in its extended forms to nonlinear term: has been applicable in the hypotheses for
existence of periodic solutions of a fourth order ordinary differential equations. For instance. see Ezeilo
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1979), (1999), (2000), Ezeilo and Tejumola' (2001), Ogbu (2006), (2007), Tiryaki (1990) and Tejumola
2006).
In this paper, our interest is on (7), which is new in the literature. Thus, we have the following

‘heorem 1
~Suppose in addition to the basic assumptions on f, g, h, and P
) There exist a;, a; constants such that
AC) P 8)

u
i) The function h(x) is such that

(%)< a, , 9
i) The function P is bounded and 2 periodic in .

hen equations (1) — (2) have at least one 2 periodic solution for arbitrary g(z) and a..

(4)

lemark: This is an extension of Tejumola result for the equation x'*’ + g, X + g,X+ g,x+ b,x = P(t,x, X, X,X)

or P, # 0 [see Tejumola 2006].

. GENERAL COMMENTS ON SOME NOTATIONS

Throughout the proof which follows, the capitals C,, (',, C,, ... represent positive constants whose
ragnitude depend at most on aq,, f, g, hand P. The constants C,, C,, C,. ... retain their identities
rroughout the proof of theorem 1. The symbols |

E’

J,» and ||, in respect of the mappings [0: 27] [

hall have their ugpal meaning |8|m = max |0()|, ||, = f”|9(t)|dt, 4, =( f iy Gz(t)dl)/z

:ét 0<1<2n
PROOF OF THEOREM 1

The proof of theorem 1 is by the Leray-Schauder fixed point technique (Leray and Schauder, 1934)
nd we shall consider the parameter A dependent equation, (0 SAs 1)

M+ f(X)+Ag(®)+h(X)+a,x= AP (10)
/here
Li(x)=>0=A)ax+Af(X)
=, (%) = (1- D)ax + h(x)

y setting
x=v.yv=s.Z=u u=-f)-Ag(2)-h, (V) -a,x+ AP (11)
e equation (10) ¢an be written compactly in matrix form
V= AX+AF(X, 1) (12)
/here
N 0 1 0 0 0
¥ 0 0 1 0 .0
X = ,A= F= (13)
z 0 0 0 1 0
u -a, g, 0 -a, Q

ith Q=P—fn+au—-g(z)-hy)i+ay
lote that equation 4&! 0) reduces to a linear equation
M +a¥+ai+ax=0 (14)
sen A = 0 and to equation (1) when A = 1. The eigenvalues of the matrix A defined by (13) are the roots of
ne auxiliary equation Ezeilo (2000) °

P aartvar a0 (15)
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If equation (15) has no root of the form r = im, then equation (14) together with the boundary condition (2)

has no non trivial solutions, since (7) is satisfied Ezeilo (2000). Therefore the matrix( /™'~ /], (/ being the
identity matrix) is mvertlble Thus, X = X(t) is a 27 periodic solution of (12) if and only if (Hale, 1963)
X = ATX, O0<sAs<1 (16)
where the transformation T is defined by '
T bl 7' .
(TX) (1) = f (137 =1) 1" F( XS )dr ' (17)
’ )

| et S be the space of all continuous 4-vector functions .\’ (/) = (x(r). y(n). z(1). u(1y) which are of period 2
and with norm

%], =

f the operator T defined by (17) is a compact mapping of S into itself then it suffices for the proof of
theorem 1 to establish a priori bounds C;, Cs, C,, C;.. independent of A such that

X, <G, |6 <G, 1Y, <Gl =G, ©(19)

see Scheafer (1955)

+|y(t)‘+|z(t)|+‘u(t)|} ' (18)

4. VERIFICATION OF (19)

Let x(t) be a possible 217 periodic solution of equation (10). The main tool to be used here in this
verification is the function V(x. y, z, u) defined by

=l s j (8 )els + a,x¥ =L, ¥ + ¥h(¥) (20)
The time derivative | along the solution path of (11) is

= =X ) + B (OX +XAD (21)
Integrating (21) with respect to t from t =0tot =2 -

[vdi=={ 5w+ j I COEdn + ‘rrﬁ\"'/i/’dl
using equatlon (2), we obtain

A

J VAR J () dr = ‘rTj{’,{P(/,

j" RVIRR R j kG| dr = f’!:i-'zy‘.ul’(dl (22)
By (8) and (9). (22) implies
1 ax o dr+ J- a¥dr< J-:‘Tif\"it(/l (23)

We have used the boundedness of P and the fact that 0 < A < 1 to achieve (23). In particular

J'fl:,:i-'-‘d: <C J’I\ ki
‘[‘A V<O J N

vhere (', =, (. q =1
Thus,

‘[\' N € I N

< ('\(Za’r)‘:(I:-:\"'(l)dl)

oy Schwartz's inequality. Therefore

or

" J‘_Jj:\'":(!la'l.]: <(CL2r) - =( (24)

Since x(0) = x(27). there exists ¥(r,) =0 at some 7, € [(). 27| such ihat
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¥(1y=X(r)+ [ X(s)ds

Then
o < :/7 e
E%I.\(I)\_‘[ (0 et
<(27)" ( ‘E”X-'(t)dr) '
by Schwartz’'s inequality. By (24)
max (1) <Q2r):C,=C,
<j=2n i
Therefore ' _
i), <C, (25)

Also since x(0) = x(27) by (2), there exist x(r,) =0 at some r, € [0. 2] such that

xX(r)=x( T, )+ J: N(s)ds

so that

max

Uer<2n

s i

7
)

<Qr)" [ j x'(z)dz)

by Schwartz’s inequality. In view of (25), we have

i <c. . (26)
2
Now integrating (10) with respect to t from t = 0 ta t = 27 and using (2) yields

[ awde= ["apar- [ f.0d- [ agérd - [ h (o (27)

the hypotheses of theorem 1, the right hand side of (27) is bounded.
That is

f" AP+ f e + Ji‘{/‘,g(.‘\'-)'dr + f'h, (X)k <C,
) ! [ ) )
Therefore
[axa <,
which implies that
I' “xdr - (28)
where ( - = 614_'(,‘6, a, 0
From section 2

oy

‘\i = J xdt
! )
That is

Also.

may (i < I.T (1)t
implies
max () < G,

0

N ~ (29)
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Now it remains the fourth inequality in (19) for our theorem 1 to be fully verified. Note that equation (10) can
be expressed in the form

N ACIEY N (30)
where .

Ny =AP—-Ag(¥)=h (x)-a,x »
with bounds on x, x, ¥ in (29), (26) and (25) respectively together with the bounded of P and the fact that 0
€A <1, then

o] < G S (31)
. Therefore ’ :
X+ [(F)<C, _ (32)

Multiplying (32) by x'*’ and integrating with respect to t from t = 0 to t = 217 yields

["x @+ [ £, <l [

Since f is a continuous function and f is defined as in section 2, there are constants (. (|, such that

o < o, o) &
Hence .

] <C, (34)
from which because of (2) with r = 3 then

%], <C, _ (35)
CONCLUSION

The estimates (25), (26), (29) and (35) verify the inequality (19) and hence the proof theorem 1,
which implies existence of Periodic Solutions for equations (1) - (2).
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