PERIODIC SOLUTIONS IN A NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATION II

H. M. OGBU

(Received 9 September 2008, Revision Accepted 21 November 2008)

ABSTRACT

The hypothesis $\chi(m) \neq 0$ has the following implications

$$\chi(m) = m^4 - a_1 m^2 + a_4 \neq 0$$

or

$$a_1 - a_1 m^2 \neq 0$$

However the attention of scholars have been on $\chi(m) = m^4 - a_1 m^2 + a_4 \neq 0$, which implies

$$a_4 - \frac{1}{4}a_2^2 > 0$$
 or $a_4 - \frac{1}{4}a_2^2 < 0$.

But the second condition $a_3 - a_1 m^2 \neq 0$ has been given little or no attention by scholars. In this paper, an existence result has been obtained using the alternative condition

$$\chi(m) = a_3 - a_1 m^2 \neq 0 \text{ or } m^2 \neq a_1^{-1} a_3$$

along side with other hypotheses.

KEYWORDS: Nonlinear ODE, boundary value problem, a priori bound, fixed point technique.

1. INTRODUCTION

Consider the nonlinear differential equation

$$x^{(4)} + f(\ddot{x}) + g(\ddot{x}) + h(\dot{x}) + a_x x = P(t, x, \dot{x}, \ddot{x}, \ddot{x})$$
(1)

with boundary conditions

$$D^{(r)}x(0) = D^{(r)}x(2\pi), \ r = 0, 1, 2, 3, \ D = \frac{d}{dt}$$
 (2)

where a_4 is a constant, $f = f(\ddot{x})$, $g = g(\ddot{x})$, $h = h(\dot{x})$, $P = P(t, x, \dot{x}, \ddot{x}, \ddot{x})$ are continuous functions with $P \ 2\pi$ periodic in t.

In a special case, consider the constant coefficients equation

$$x^{(4)} + a_1\ddot{x} + a_2\ddot{x} + a_3\dot{x} + a_4x = 0 \tag{3}$$

with the corresponding nonhomogeneous equation

$$x^{(4)} + a_1\ddot{x} + a_2\ddot{x} + a_3\dot{x} + a_4x = P(t, x, \dot{x}, \ddot{x}, \ddot{x})$$
(4)

both (3) and (4) subject to the boundary condition (2). The auxiliary equation

$$r^4 + a_1 r^3 + a_2 r^2 + a_3 r + a_4 = 0$$

of (3) has a root of the form r = im (m an integer) if the equation

$$m^4 - a_5 m^2 + a_4 = 0$$
 and $m(a_5 - a_1 m^2) = 0$ (5)

are satisfied simultaneously Ezeilo (1979). The boundary value problem (3) – (2) has no nontrivial solutions if either

$$\chi(m) = m^4 - a_2 m^2 + a_4 \neq 0 \tag{6}$$

or

$$a_3 - a_1 m^2 \neq 0 \text{ or } m^2 \neq a_1^{-1} a_3$$
 (7)

The equation (6) in its extended forms to nonlinear term has been applicable in the hypotheses for existence of periodic solutions of a fourth order ordinary differential equations. For instance, see Ezeilo

i)

iii)

1979), (1999), (2000), Ezeilo <mark>and Tejumola (2001), Ogbu (2006), (2007), Tiryaki (1990) and Tejumola</mark> 2006).

In this paper, our interest is on (7), which is new in the literature. Thus, we have the following

heorem 1

Suppose in addition to the basic assumptions on f, g, h, and P

There exist a_1 , a_3 constants such that

$$\frac{f(u)}{u} \ge a_1, \ u \ne 0 \tag{8}$$

ii) The function h(x) is such that

$$|h'(\dot{x})| \le a_3 \tag{9}$$

The function P is bounded and 2π periodic in t.

hen equations (1) – (2) have at least one 2π periodic solution for arbitrary g(z) and a_4 .

Remark: This is an extension of Tejumola result for the equation $x^{(4)} + g_1\ddot{x} + g_2\ddot{x} + g_3\dot{x} + b_4x = P(t, x, \dot{x}, \ddot{x}, \ddot{x})$ or $P_1 \neq 0$ [see Tejumola 2006].

GENERAL COMMENTS ON SOME NOTATIONS

Throughout the proof which follows, the capitals C_1 , C_2 , C_3 , ... represent positive constants whose nagnitude depend at most on a_4 , f, g, h and P. The constants C_1 , C_2 , C_3 , ... retain their identities proughout the proof of theorem 1. The symbols $\left| \cdot \right|_x$, $\left| \cdot \right|_1$, and $\left| \cdot \right|_2$ in respect of the mappings $\left[0 \colon 2\pi \right] \to \Box$

hall have their usual meaning

$$|\dot{\theta}|_{\infty} = \max_{0 \le t \le 2\pi} |\theta(t)|, \ |\theta|_{1} = \int_{0}^{2\pi} |\theta(t)| dt, \ |\theta|_{2} = \left(\int_{0}^{2\pi} \theta^{2}(t) dt\right)^{\frac{1}{2}}$$

PROOF OF THEOREM 1

The proof of theorem 1 is by the Leray-Schauder fixed point technique (Leray and Schauder, 1934) and we shall consider the parameter λ dependent equation, $(0 \le \lambda \le 1)$

$$x^{(4)} + f_{\lambda}(\ddot{x}) + \lambda g(\ddot{x}) + h_{\lambda}(\dot{x}) + a_4 x = \lambda P$$
(10)

here

$$f_{\lambda}(\ddot{x}) = (1 - \lambda)a_{1}\ddot{x} + \lambda f(\ddot{x})$$

$$h_{\lambda}(\dot{x}) = (1 - \lambda)a_3\dot{x} + h(\dot{x})$$

By setting

$$\dot{x} = y, \ \dot{y} = z, \ \dot{z} = u, \ \dot{u} = -f_{\lambda}(u) - \lambda g(z) - h_{\lambda}(y) - a_4 x + \lambda P$$
 (11)

ne equation (10) can be written compactly in matrix form

$$\dot{X} = AX + \lambda F(X, t) \tag{12}$$

h**e**re

$$X = \begin{pmatrix} x \\ y \\ z \\ u \end{pmatrix}, A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_4 & -a_3 & 0 & -a_1 \end{pmatrix}, F = \begin{pmatrix} 0 \\ 0 \\ 0 \\ Q \end{pmatrix}$$
 (13)

with $Q = P - f(u) + a_1 u - g(z) - h(y) + a_3 y$

lote that equation (\$0) reduces to a linear equation

$$x^{(4)} + a_1 \ddot{x} + a_3 \dot{x} + a_4 x = 0 \tag{14}$$

when $\lambda = 0$ and to equation (1) when $\lambda = 1$. The eigenvalues of the matrix A defined by (13) are the roots of the auxiliary equation Ezeilo (2000)

$$r^4 + a_1 r^3 + a_1 r + a_2 = 0 ag{15}$$

If equation (15) has no root of the form r = im, then equation (14) together with the boundary condition (2) has no non trivial solutions, since (7) is satisfied Ezeilo (2000). Therefore the matrix $\left(\ell^{2\pi A} - I \right)$, (*I* being the identity matrix) is invertible. Thus, X = X(t) is a 2π periodic solution of (12) if and only if (Hale, 1963)

 $X = \lambda T X, \qquad 0 \le \lambda \le 1$ (16)

where the transformation T is defined by

$$(TX)(t) = \int_{-\infty}^{2\pi} \left(t^{-2\pi} - I \right)^{-1} t^{A(t-s)} F(X(t), S) dt$$
(17)

Let S be the space of all continuous 4-vector functions $\overline{X}(t) = (x(t), y(t), z(t), u(t))$ which are of period 2π and with norm

$$\|\bar{X}\|_{s} = \sup_{0, t \ge 2\pi} \{|x(t)| + |y(t)| + |z(t)| + |u(t)|\}$$
(18)

If the operator T defined by (17) is a compact mapping of S into itself then it suffices for the proof of theorem 1 to establish a priori bounds C_7 , C_5 , C_4 , C_{12} , independent of λ such that

$$|x|_{1} \le C_{1}, |x|_{2} \le C_{1}, |x|_$$

see Scheafer (1955)

4.

VERIFICATION OF (19)

Let x(t) be a possible 2π periodic solution of equation (10). The main tool to be used here in this verification is the function V(x, y, z, u) defined by

$$V = \frac{1}{2}\ddot{x}^2 + \int_0^x g(s)ds + a_4x\ddot{x} - \frac{1}{2}a_4\dot{x}^2 + \ddot{x}h(\dot{x})$$
 (20)

The time derivative Γ along the solution path of (11) is

$$\vec{V} = -\vec{x}f_{z}(\vec{x}) + h'_{z}(\vec{x})\vec{x}^{2} + \vec{x}\lambda P \tag{21}$$

Integrating (21) with respect to t from t = 0 to $t = 2\pi$

$$\int_{0}^{2\pi} V dt = -\int_{0}^{2\pi} \widetilde{x} f_{\lambda}(\widetilde{x}) dt + \int_{0}^{2\pi} h_{\lambda}'(\widetilde{x}) \widetilde{x}^{2} dt + \int_{0}^{2\pi} \widetilde{x} \lambda P dt$$

using equation (2), we obtain

$$\int_{0}^{2\pi} \widetilde{x} f(\widetilde{x}) dt - \int_{0}^{2\pi} h'(\widetilde{x}) \widetilde{x}^{2} dt = \int_{0}^{2\pi} \widetilde{x} \lambda P dt$$

$$\int_{0}^{2\pi} \widetilde{x} f(\widetilde{x}) dt + \int_{0}^{2\pi} \left| -h'(\widetilde{x}) \right| \widetilde{x}^{2} dt \le \int_{0}^{2\pi} \left| \widetilde{x} \right| \left| \lambda \right| \left| P \right| dt$$
(22)

By (8) and (9). (22) i<mark>mplies</mark>

$$\int_{0}^{\infty} a_{i} \ddot{x}_{i} dt + \int_{0}^{2\pi} a_{i} \ddot{x}_{i}^{2} dt \le C_{1} \int_{0}^{2\pi} |\ddot{x}| dt$$
(23)

We have used the boundedness of P and the fact that $0 \le \lambda \le 1$ to achieve (23). In particular

$$\int_0^{2\pi} a_1 \overline{x}^2 dt \le C_1 \int_0^{2\pi} |\overline{x}| dt$$

r

$$\int_{-\infty}^{\infty} |\widetilde{x}| dt \le C_{\infty} \int_{-\infty}^{\infty} |\widetilde{x}| dt$$

where $C_2 = a_1^{-1}C$, $a_1 \neq 0$

Thus,

$$\int_{-\infty}^{\infty} x^{2}(t)dt \le C_{2} \int_{0}^{\infty} |\widetilde{x}| dt$$

$$\le C_{2} (2\pi)^{\frac{1}{2}} \left(\int_{0}^{\infty} \widetilde{x}(t) dt \right)$$

by Schwartz's inequality. Therefore

$$\left(\int_{0}^{2\pi} \ddot{x}^{2}(t)dt\right)^{-2} \leq C_{s}(2\pi)^{-1} \equiv C_{s} \tag{24}$$

Since $x(0) = \dot{x}(2\pi)$, there exists $\ddot{x}(\tau_i) = 0$ at some $\tau_i \in [0, 2\pi]$ such that

$$\ddot{x}(t) = \ddot{x}(\tau_{i}) + \int_{\Gamma} \ddot{x}(s)ds$$

Then

$$\max_{0 \le t \le 2\pi} |\ddot{x}(t)| \le \int_0^{2\pi} |\ddot{x}(t)| dt$$

$$\le (2\pi)^{\frac{1}{2}} \left(\int_0^{2\pi} \ddot{x}(t) dt \right)^{\frac{1}{2}}$$

by Schwartz's inequality. By (24)

$$\max_{0 \le t \le 2\pi} |\ddot{x}(t)| \le (2\pi)^{\frac{1}{2}} C_3 \equiv C_4$$

Therefore

$$\left|\ddot{x}\right|_{x} \le C_{4} \tag{25}$$

Also since $x(0) = x(2\pi)$ by (2), there exist $\dot{x}(\tau_2) = 0$ at some $\tau_2 \in [0, 2\pi]$ such that

$$\dot{x}(t) = \dot{x}(\tau_2) + \int_{\tau_2} \ddot{x}(s) ds$$

so that

$$\max_{0 \le t \le 2\pi} |\dot{x}(t)| \le \int_0^{2\pi} |\ddot{x}(t)| dt$$

$$\le (2\pi)^{\frac{1}{2}} \left(\int_0^{2\pi} \ddot{x}(t) dt \right)^{\frac{1}{2}}$$

by Schwartz's inequality. In view of (25), we have

$$|\dot{x}|_{L} \le C, \tag{26}$$

Now integrating (10) with respect to t from t = 0 to $t = 2\pi$ and using (2) yields

$$\int_0^{\tau} a_i x dt = \int_0^{2\pi} \lambda P dt - \int_0^{2\pi} f_{\lambda}(\ddot{x}) dt - \int_0^{2\pi} \lambda g(\ddot{x}) dt - \int_0^{2\tau} h_{\lambda}(\dot{x}) dt$$
 (27)

With bounds on \ddot{x} , \dot{x} in (24), (25) and (26) respectively and the boundedness of P as specified in (iii) of the hypotheses of theorem 1, the right hand side of (27) is bounded.

$$\int_{0}^{2\pi} |\lambda P(t) + \int_{0}^{2\pi} |f_{\lambda}(\ddot{x})| dt + \int_{0}^{2\pi} |\lambda g(\ddot{x})| dt + \int_{0}^{2\pi} |h_{\lambda}(\dot{x})| dt \le C_{\lambda}$$

Therefore

$$\int_{0}^{2\pi} a_4 x dt \le C_6$$

which implies that

$$\int_{-\infty}^{\infty} x dt \leq C, \tag{28}$$

where $C_{-} = a_4^{-1}C_6$, $a_4 \neq 0$

From section 2

$$|x|_1 = \int_0^{2\tau} x dt$$

That is

Also.

$$\max_{t \in \mathcal{T}} |x(t)| \le \int_{1}^{2\pi} |x(t)dt|$$

implies

$$\max_{0 \le t} |x(t)| \le C_7$$

$$|x|_t \le C \tag{29}$$

Now it remains the fourth inequality in (19) for our theorem 1 to be fully verified. Note that equation (10) can be expressed in the form

$$x^{(4)} + f_i(\ddot{x}) = \eta_0 \tag{30}$$

where

$$\eta_0 = \lambda P - \lambda g(\ddot{x}) - h_i(\dot{x}) - a_i x$$

with bounds on x, \dot{x} , \ddot{x} in (29), (26) and (25) respectively together with the bounded of \dot{P} and the fact that $0 \le \lambda \le 1$, then

$$|\eta_0| \le C_8 \tag{31}$$

Therefore

$$x^{(4)} + f_{\lambda}(\ddot{x}) \le C_{10} \tag{32}$$

Multiplying (32) by $x^{(4)}$ and integrating with respect to t from t = 0 to $t = 2\pi$ yields

$$\int_{0}^{2\pi} x^{(4)^{2}}(t) dt + \int_{0}^{2\pi} f_{\lambda}(\ddot{x}) x^{(4)} dt \leq |\eta_{b}| \int_{0}^{2\pi} |x^{(4)}| dt$$

Since f is a continuous function and f is defined as in section 2, there are constants C_n , C_n , such that

$$\left|x^{(4)}\right|_{2}^{2} \le C_{\eta} \left|x^{(4)}\right|_{2} + C_{10} \left|x^{(4)}\right|_{2} \tag{33}$$

Hence

$$\left| x^{(4)} \right|_{2} \le C_{11} \tag{34}$$

from which because of (2) with r = 3 then

$$\left|\ddot{x}\right|_{2} \le C_{12} \tag{35}$$

CONCLUSION

The estimates (25), (26), (29) and (35) verify the inequality (19) and hence the proof theorem 1, which implies existence of Periodic Solutions for equations (1) – (2).

REFERENCES

- Ezeilo, J. O. C., 1979. Periodic solutions of a certain fourth order differential equation, Atti Acad, Nazi, Lincei CL Sci Fis Mat Natur vol LXVII 344-350.
- Ezeilo, J. O. C., 1999. Non resonant oscillations for some fourth order differential equations I. Directional in mathematics 15-25.
- Ezeilo, J. O. C., 2000. Periodic BVP for some fourth order differential equations, Proc. Of National Mathematics Centre, Abuja, Nigeria, Vol 1 Number 1, 1-14.
- Ezeilo, J. O. C. and Tejumola, H. O., 2001. Non resonant oscillations for some fourth order differential equation II. Journal of Nigerian Mathematical Society, Vol 20, 45-58.
- Hale, T., 1963 Oscillations in nonlinear systems, McGraw-hill, New York, Toronto, London.
- Leray. J. and Schauder, J., 1934. Topologie et equations functionelles, Ann. Sci Ecele norm sup (3) 51, 45-78.
- Ogbu, H. M., 2006. Existence of periodic solutions for a boundary value problem of a fourth order differential equation. Journal of Information, Communication and Computing Technologies, Ebonyi State University, Abakaliki Nigeria. Vol. 2, 85-88
- Ogbu, H. M., 2007. Existence of periodic solutions for a certain boundary value problem of a non-linear fourth order differential equation, Pacific Journal of Science and Technology USA 8(1) 130-136
- Scheafer, H., 1955. Uber der methode de a priori schranken, math ann. 129 415 416
- Tejumola, H. O., 2006. Periodic boundary value Problems of some fifth, fourth and third ordinary differential equations, J. of Nigerian Math. Soc. Vol. 25 pp 37-46
- Tiryaki, A., 1990. On periodic solutions of certain fourth and fifth order differential equation, Pure and Applied Mathematical Sciences Vol. xxxii Number 1-2, 15-19