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ABSTRACT

This paper explored the Transfer Function (TF) Models for both the outlier-free (OF) and outliei
contaminated (OC) series. A TF model of order q.r [TF (q,r)] was defined for the two observable stationar .
time series and the contribution of outlier input series in TF model as well as its effects on output series
generated was examined. It was observed that outliers affect significantly the estimates of the models
Apart from this, the model residual variance was affected too. The test criterion was also seriously
jeopardized as a tool for measuring the adequacy of fit because outlier series are embedded in its
computation.
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1. INTRODUCTION

Time series data often contain outliers or observations that are distinct from most of the other
observations which have an effert -~ parameter estimates and more importantly lead to inaccurate
forecasts (Chang (1982 ard Tsay (1984)). A common approach to deal with outliers in a time series is ¢
identify the locations and the types of outliers and then use intervention models discussed by Box and Tiao
(1975) to accommodate the outlier effects. This approach requires iteration between stages of outlier
detection and estimation of an intervention model. Wetherill (1986) in data exploration pointed out that two
broad questions may arise and these must be carefully distinguished. One problem is how to react to the
outliers and what principles and methods can be used to support rejecting them, adjusting their values or
leaving them unaltered prior to processing the principal mass of data. The next problem is what to do with
these outliers once they are located.

Outliers can take several forms in time series. Fox (1972) proposed the formal definitions and a
classification of outliers in time series context. He proposed a classification of time series outliers to Type |
and Type Il based on an autoregressive model. These two types have |ater been renamed as additive and
innovational outliers (Muirhead (1986)).

For a properly deduced stationary process, let X, be the observed series and Z, be the outlier free
series. Consider a familiar time series model (Tsay (1986)).

Il (B) Zt = at
where

n@\=1-1,B-11,8°-..

{a} is a sequence of identically, independently distributed normal variables with zero mean and
variance o’ . Assume that {Z |follows a general ARMA (p, q) model, ¢(B)Z, = 8(B) a,

where
¢B)=1-6,B-... -¢,B°
6(B)=1-6,B-. . -0B°
and ,
{a} is a sequence of white noise, independent and identically distributed (Tsay (1986)).
The models commonly employed on the outlier-free time series Z. are the Additive Outlier (AO) and the
Innovational Outlier (10) which are defined respectively of a single outlier for a simple case as

Z, t=T
X =
Z,+D  t=T
=2,+DE" '
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_ 6(8) (T)
kM D&, | (1
where
1 , t=T
£(Th o
T
0 ., t=T

is the indicator variable representing the presence or absence of an outlier at time T (Fox (1972), Abraham
and Box (1979), Denby and Martin (1979) and Chang and Tiao (1983)).

An innovational outlier (I0) model is defined as clearly pointed out by Fox (1972) and Chang and Tiao .
(1983)

0B), .o
xt=zt“'—D§( ' (2
oB)
The AO affects the level of the Tth observation whereas an IO affects all observations Xy, Xy.4, . . . beyond

time T through the memory of the system described by 6(B)/¢(B). The AO can be regarded as a gross error
model (Tsay (1986)).

In general, Tsay (1986) showed that the presence of more than one outlier of various types in a model is
specified by

X, =Y. V.(B)D, &' +2, - 3
k=1

where
Z,=6(B)¢"(B) a
V(B) = 1 for AO model

Vi (B) = G(B) for 10 model

o(B)
at time t = T, and n is the number of outliers.
Fox (1972) made no methodological proposals to distinguish between the two basic types of outliers. This
is remedied in the work of Muirhead (1986) who presents a test of discordancy for a single outlier of
unknown type and proceeds to examine the properties of an appealing likelihood-ratio-based rule for
distinguishing whether the outlier is of AO or 10 type. He also compares this rule with corresponding
Bayesian procedure.

2. OUTLIER BASED TRANSFER FUNCTION MODEL

Box and Jenkins (1976) expressed mathematically a basic transfer relationship for a bivariate
stochastic process for X, and Y, as:

#B)Y = 8(B)X, + & 4)
or
- o(B) X, + i
o(B)
where
q
6(B)=1-> 6B
=1
oB)=1- ¢B
and |
L, =¢" (B

The two polynomial functions in B, ¢'(B) 6(B) is the model's transfer function, ¢ 1s the inherent
uncontrollable random effects which contribute to the transformation of X. to Y,.
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Equation (4) is said to be a transfer function model denoted by TF (q, r, d) in which ¢(B) is of order r, 8(B) is
of order q and the series in the model requires differencing d times to attain stationarity (Box and Jenkins
(1976)).
In contrast to the series X, X, indicates the extent of delay (measured by b) before a response
from Y, manifests. The resultant impulse response function denoted by V(B) is analogous to the transfer
function, since from the expression

Y, = V(B)Xp + €, (5)

where

V(B)=V,+V,B. .V4B?

When V(B) = ¢'(B) 8(B), the impuise response function model in equation (5) becomes a transfer function
model (Box and Jenkins (1976)).

There exists similarities between a linear regression and transfer function model. As a result of this,
the detection of outliers and other diagnostics based on residuals have been widely used in linear
regression. Box and Jenkins (1976) and Chatfield (1980) suggested that the stochastic properties of
residuals must be examined for the adequacy of fit of the models. To check whether the errors are normally

distributed, one can construct a histogram of the standardized residualsa, /G, , and compare it with the
standard normal distribution using the chi-square goodness of fit test or even the Tukey's simple five-
number summary (Tukey (1960)). To check whether the residuals are white no's2 we compute the sample

autocorrelation function of the residuals to see whether they do not form any pattern and are all statistically
insignificant (Box and Jenkins (1976) and Chatfield (1980)).

Let us assume that the input series X, follow an ARMA process of order (q, r) and suppose the inverse
autocorrelation function in ¢, is characterized by

$(B)X; = 6(B) & (6)
where

9 .
¢(B)= D ¢B
1=1

6(8)= > ¢8B'
j=1

do = 1. 6, = 1 and g, is a white noise process
B . . . .

€= g%a—; X, s often called the prewhitened input series (Box and Jenkins (1976)).

Applying the prewhitening transformation to the output series Y,, we obtain a filtered output series
%(8)
g = X
o(B)
The combined dynamic-disturbance model is given by
o(13) |
B)Y,=6B) X+ —=< X 7

o(B) Y ()'Q(B)l (7)

Pierce (1972) has shown that
_ 6(B) Z 4 6(B) D™ 4 (8)
o(B) o(B)
=11°(B)7, + K,

where
6(B)
ne)=—
( ) (B

L, ¢(B) £,
and

K, =T (B)D=" +¢ 9
is the residual of the outher induced model defined in equation (8).

Following Tsay (1986), the magnitude of the outliers based on the least squares theory is
D'-n?a(B)J
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where
J = a(B) X,
« (B) = ¢(B)/(B)
=1-(X.1 B'(X.z Bz'. ..
(obtained after fitting ARMA model to the outlier-free series Z;)
le = (1 + (112 +. ..+ (X.zn_k)-1
k = number of fitted lags.

The variance of the estimate of D is
Var (D) = n’ o
where o is the variance of a, for an outlier-free series.
Hence :
Var(K)= ' o, + o ' - (10)
where
o, is the variance of g,

The variability in the residual model for an outlier-contaminated series is increased by 1’ o, as is evident
from equation (10) and the precision of the output generated can be measured through the variance of K.

For an outlier-contaminated (OC) and outlier-free (OF) models, we assume that they follow TF (q. r) models
and that the error term in both models is white noise and define the models as
OC: Yi=d1 Y+,  +ogYigt o 2+, .+, 2y
+ 0D+ oDy + gy 11)
OF. Yi=bi Y+ .. +dgYigto Xp+ .. +o, X, + ¢ (12)

Olewuezi and Shangodoyin (2005) used the linear regression approach to obtain sets of q + r linear
simultaneous equation for the inverse auto covariance function.

3. EMPIRICAL ILLUSTRATION

To examine the contribution of outlier input series in TF model specification as well as its effects on
the output series generated, an outlier input series was assumed and Tsay (1986) detection techniques
were used to observe the timings of the outliers. The estimates of the coefficients were computed with their
variances. A comparison is made between OF and OC transfer function models. Series 1 is the sales data
with leading indicator published by Box and Jenkins (1976), Series 2 is the simulated data of size 100. The
simulation method is as follows (Olewuezi (2007)).

(a) Obtain normal random deviates using the random normal generator formula from the excel
package. '
(b) Repeat step (a), one hundred times.
(©) Obtain the mean i1 and the standard deviation « of the series.
(d) Standardize the series using
X n

(8}

=

where
X is the generated observation

The simulation has two purposes to compare the behaviour of inverse autocorrelation function (IACF) for
outlier-free and outlier-contaminated data and to show that when the outlier effect is moderate, the IACF
can still specify the underlying model for Z, and the employed outlier detection procedure can then identify -
the existing outlier. By the model suggested by Olewuezi and Shangodoyin (2005), the inverse
autocorrelations for the series were obtained. Also, using the outlier detection techniques by Tsay (1986),
the timings and the number of outliers were obtained as shown in Table 1. Table 1 shows the estimates of
the models fitted with their standard errors.
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Table 1: Estimates of the models fitted with their standard errors in bracket.

Type of series 1 2
without outliers with outliers without outliers | with outliers
Number of outliers ' - 25 - 10
Timing - 2,5 6,9 12 15, - 1, 5, 10, 15,
16, 25, 30. 32, 37, 20, 37, 39,
60, 65, 100, 102, 52, 59,70
104, 111, 113, 119,
120, 130, 132, 134,
139, 142
o Estimate _ ‘ :
oy 0, 332 (0.121) - 1.952 (0.230) 0.821(0.013) 0.935
o, 0.253 (0.182) 0.352 (0.248) (0.128)
o Estimate
oo 1.230(0.032) -0.321(0.520) 0.310 (0.024) -0.521
w4 0.653 (0.210) -0.951(0.321) -0.119 (0.101) (0.102)
o 1.367 (0.238) 1.023 (0.421) 0.237
(0.203)
Prob (F) 0.000 0.011 0.081 0.041
Variance of the residual 3.125 4.351 0.560 1.006

Series 1
The series was differenced once before attaining stationarity. A TF (2, 1, 2) models were fitted for both the
OF and OC models.
For the OC we fitted

Y' = 1.952Y'.2 + 0.352Y,, + 0.321X; -
For the OF we fitted
) Y, =0.332Y,, + 0.253Y,, + 1.230X, + 0.653X;, + 1.367X,; + &
The model residual variance with outliers is 1.39 muitiple of the model! residual variance without outliers.
The magnitude of the standard error of the estimates of ¢, ¢1, o, ®1 and o, are smaller for the OF model
than what was obtained for the contaminated model. The test statistics indicate that both models are
adequate and the power of the test for the model without outlier is better than that obtained for the outlier
contamimated model.

0.951X1.1 + 1.023XQ.2 + g

Series 2

This is the simulated series of size 100. A TF (1, 1) was fitted to the series when the input are
OC:  Y,=0.935Y,4 = 0.521X, + 0.237X;.. + &,

and

OF: Y1 0. 821Y11 + 0.31 OX1 0.1 19X,,1 + &

The residual variance of the contaminated series is about 1.796 multiple of that obtained for the model
without outliers. The standard errors of the estimates ¢.. v, and », for the OF model are greater than that
obtained for the OC model. The test statistics indicate that both models are adequate.

4. IMPLICATIONS OF THE RESULT

Outliers affect significantly the estimates of the model. Understanding the source and reason of an
outlier can provide insight into the series and hence suggest an appropriate method for handling the outlier.
The model residual is also affected. Of course, this will have a combined effect on the precision of the
output generated. These biases can be severe and depend on, besides the obvious attributes like the
number, type, magnitude and position of the outliers, the underlying model, its autocorrelation structure and

“hence the distribution of the estimates of the TF models. The finding has revealed that the standard error of
the model is also affected. The method cannot reveal what caused the series to behave inconsistently, it
can often identify those observations that deserve special treatments. Consequently, a substantial
reduction in residual mean square was obtained. In series of short to moderate lengths, often the presence
of a single outlier will result in a true AR model being falsely identified as a MA or an ARMA model and the
identified lag lengths (q or r) will also be wrong. The presence of outliers may then cause biases in TF
modeling and this can jeopardize the functions as model identification tools. As a suggestion, a check of the
series is very necessary for the presence of outliers before modeling.
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