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ABSRACT

The purpose of this work was to develop special models from the general Bilinear Moving Average
Vector (BMAV) Models. These models were established with only pure diagonal coefficients of the vectors
of nonlinear components. The autocorrelation and partial autocorrelation functions for the vector series
obtained suggested a pure moving average process for the vector models. A Pure Diagonal Bilinear Moving
Average Vector (PDBMAV) Models were obtained. This is a special case of the general Bilinear Moving
Average (BMAV) Models. This is so because of the associative products of vectors and their respective
white noise forming the principal diagonal of the vector matrices. The estimates obtained validate PDBMAV
models established. These are shown in figures ‘1", '2'. and ‘3.

KEY WORDS: Pure Diagonal Vectors, Bilinear Vector Models, Moving Average Vector Models, Bilinear
Moving Average Vector Models.

INTRODUCTION

Most time series analysts assume linearity and stationarity, for technical convenience, when
analyzing macroeconomic and financial time series data, (Franses, 1998). However, some of the
microeconomic and financial data are not linear, due to its dynamic behaviour. Classical linear models are
not appropriate for modelling such nonlinear series, (Subba Rao and Gabr, 1984). In most cases, nonlinear
forecast is superior to linear forecast. Maravall (1983) used a bilinear model to forecast Spanish monetary
data and reported a near 10% improvement in one-step ahead mean square forecast errors over several
ARMA alternatives. There is no-gainsaying the fact that most of the economic or financial data assume
fluctuations due to certain factors. That is why the use of nonlinear models in forecast gives higher
precision than linear modeils.

Let e; be a sequence of independently and identically distributed random variables defined on a
probability space (Q,B,P) with E(e)) = 0 and E(e?) = 0% < «. The general superdiagonal bilinear model X,
with respect to e,is

r h ms

Xi=¢ + Z a.X.-. + z b,-e'-, + Z Z ci,X.-ie(-, ' 1.1

i=1 i=1 i=1j=1 '

where a,, b, ¢, are fixed time independent parameters, (Akamanam, Bhaskara Rao and Subramanyam,
1986).

Oyet (1991) defined a process (X:) . on a probability space (Q.§,P) as a time varying bilinear process of
order (p.q,P,Q) and denoted by BL(p.q.P.Q), if it satisfies the following stochastic difference equation:
P q P Q
X = Zaia)Xe + Zei(C)er + T Zbj(b)Xti€ry + &
i=1 =1 i=1 j=1

where (a,i(@))1sp, (C1(C))1sisq. (D D)1sisp. 1siso are time-varying coefficients which depend on finite
dimensional unknown parameter vectors a, ¢ and b respectively. The sequence (&;)e; is a heteroscedastic
white noise process. That is, (), is @ sequence of independent random variables, not necessarily
identically distributed, with mean zero and variance o> Moreover ¢, is independent of past X, The initial
values X, t < 1, and & 1«

are assumed to be equal to zero.

Boonchai and Eivind (2005) stated the general form of a multivariate bilinear time series model as
X = FAX.i + TMier, + X33 BgiXr.i€ar + €1

Here the state X; and noise e, are n-vectors and the coefficients A;,M,, and Bg; = 0, and we have the class of
well-known vector ARMA models. The bilinear models include additional product terms BgiXy.€q.; as the
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theoretical point of view, it is therefore natural to consider bilinear models in the process of extending linear
theory to non-linear cases. According to Boonchai and Eivind (2005). a particular reason for introducing
bilinear time series in population dynamics is that they are suitable for modelling environmental noise. One
may start with a deterministic system with (constant) parameters that describe conditions that depend on a
fluctuating environment. Boonchai and Eivind (2005) made extension first to univariate and then to
multivariate bilinear models. The main results give conditions for stationarity, ergodicity, invertivility, and
consistency of least square estimates.

Usoro and Omekara (2007) established Bilinear Moving Average Vector (BMAV) Models. Their models
involved interactive products of vectors and their white noise In their work, the parameters of the non linear
parts were the coefficients of the interactive products. Their models were used for estimation and forecast
of values of each vector.

In this paper, the interest is in the pure diagonal parameters forming the vector matrices. This calls
for a special case of the General BMAV models. The parameters of the pure diagonal matrices are the
coefficients of only the associative products of the vectors and their respective white noise.

2. 'ESTIMATION OF PARAMETERS OF THE VECTOR MODEL

A. LINEAR MOVING AVERAGE VECTOR MODELS
The general Vector Moving Average, VMA(Q) process is given

Xt €, ] (Il-l A A |3---)\|AD € )\/2;1 A )\2.I3---)¥h €2
X2 Coul [ M2 M2 Mz hiom | €2 X2 Rz M2 ees doom [ €2

Xa| = [ €ulH Mz Mz Misseec XMism | (€] [A2n A2 2233 A2sm | |€a2
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The expansion of the above matrices gives the following models,

g v m
x1t = €1t+ Z Z ZAb'(revr Lo e e T e e . (21)
h=1 j=1 h=1
q v
X = €x+ 3 ¥ 7 A€o
0=1j=1 h=1
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q Vv m
Xst =€x+ 2 2 YMha€ro - L (2.3)
b=1j=1 h=1
qvVv m
Xt = €+ 2 ¥ ZMAdw€in. Lo (2.4)
b=1j=1h=1

Therefore, models '2.1’, '2.2''2.3' and ‘2.4’ express linear moving average relationships of Xy, Xz, Xai,... Xn
vectors with distributed lags of €1, €2, €31,...,€n. Ay 1. Ap2n, Avan,..., Aovn are the matrices of coefficients of
the moving average vector series. The above models can further be written as

q vm

. xjt = evi+ Z Z ZAbvhSJLb
b=1j=1 h=1
j=1,...nn=y,

where, X, i" vector series, A1, A2, Ava,...,Avq are the matrices of coefficients of the moving average
vector serie.

B. NONLINEAR PURE DIAGONAL MOVING AVERAGE VECTOR MODELS
The nc%nlinear vector models involving pure diagonal coefficients is given as,

xﬁ @-11 0 0 0\ €1l-1
Xa 0 Bor 22 o ... O €1
Xat 0 0 Bo133 0 €1 [(Xiro, Xato, Xator -, Xato)
Xo 0 0 0 . Boun/|€us
J \ — N
@ n 0 0 0\ €2
0 Bo2 22 0 0 €2
0 0 Bo233 .. 0 €2 (X0, Xaro. Xaro. .. Xnro)
Q 0 0 Bozy evsz
/B 0 0 . O\ (€na)
0 Bos 22 0 0 €23
) -0 0 Bos 33 ... 0 E:31-3 (xwoy xzt-o. )Qst-o- xm-o)
0 0 0 Bosnv | |Ewa
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BOq 1" 0 0 R O e."_q
0 Buz 0 - 0 ||€xg

0 0  Bum. 0 |[€uq o Xano Xaio o Xuro)

Q 0 0o .. BW €uq

‘The above matrices remain principal diagonal for i=j, and b=1. The model becdmes.
n v pq
2 2 2 XBowiXi€itov S 26
i=ja=b
(C) PURE DIAGONAL BILINEAR MOVING AVERAGE VECTOR MODEL
The above model is the combination of the linear and nonlinear pure diagonal parts. This combination

produces the following model:

q v m : nv q

Xt =€+ T I ThwCw + 3 I 3 PBowiXaCito 27
b=1j=1 h=1 i=j b=1
ji=1....n.n=y,

3 ESTIMATION OF PARAMETERS OF THE VECTOR MODELS
X (eu ] /)\1 no A Ana\ €, (0 0 A213\

N
|
|
| e |
|
!

€2

| |
oo E | =
P Xy = €y ‘*’ M2 M A | €] * ‘| 0 0 A2 23] e?t-2|
P | i | ‘-
o | o
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Expansion of the matrices provides the following models.
X = €n+ A 11€101 + A 12€211 + A1 13€310 + A2 13 €312 + bor 11X 110€ 111
+ Bo1.22X2t:0€2t-1 + Bor 33X310€ 31 + Bo2 33Xa-0€3t-2 - : - 31

2= €+ M 21€111 + Ay 22€214 + A1 13€311 + A2 23 €32 + bot 11X11.0€ 119
+ Bo1 22X2t:0€21 + Bo1.33X3t-0€ 31 + Bo2.33X31-0€ 312 : : 32

Xt = €3+ A€ + A 32€2010 + Ay 13€310 + A233 €302 + oy 11 X0€ 111

+ Bo1 22X210€201 + Bot 13X310€301 + Bo2 33X310€ 302 33
The above models are called Pure Bilinear Moving Average Vector Diagonal (PDBMAV) modeis.
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According to Lewis and Stevens (1991), the multiple partitions and predictor vector interactions calls
for multivariate adaptive regression method for the estimation of the above models. X;,, Xy and X
are functions of linear vectors on one part and nonlinear interactions of vectors and their respective
white noise on the other part. The least squares regression, using ‘'minitab’ give the following
estimated models for X,,, Xz and X '

X1 =€y ~0.496€ 41y + 0.178€ 3.1 — 0.375€ 3.+ 0.00227 X 11.0€ 11-1 :
- 0.00044by, 22X2,_0€2,;1 +0.0011 1X3L0€3t-1 - 0.00208 bg, 33x3t-0€3t—2 . .34

XZ1 = 621 + 0.004611-1 - 0,40762(_1 + 0.056 631,2 + 0.00070X1(,oe11_1
+ 0.00091X3.0€ 2.1 + 0.00178X3.0€ 3.1 = 0.00174bg; 33X31.0€ 312 . .35

X3 = €4~ 500€ 1 + 0.585€,.1 - 0.431€4., + 0-00157x1t—0€1t—1
= 0001 SSX2(.0€21-1 "‘000067 b01 33X3(.0€3t-1 ‘000034b02 33X3(.0€3(-2 . 36

CONCLUSION

A Pure Diagonal Bilinear Moving Average (PDBMAV) model obtained for each vector series made
the model a special case of Bilinear Moving Average Vector (BMAV) models. This is because the
coefficients of the nonlinear part were restricted to only the principal diagonal of the coefficient matrices.
This has significantly reduced the number of multiple coefficients in the General BMAV models to smaller
number of coefficients, whose estimates are slightly better than that of the BMAV models. Appendices ‘1’
and'2' are the original and estimated values of the vector series. The values in appendix ‘2’ show slight
deviations from actual values in appendix ‘1'. This further proves fitness of the models established.
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PLOTS OF ACTUAL AND ESTIMATES OF X2t
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APPENDIX 1: STATIONARY VECTOR SERIES OF INTERNALLY GENERATED REVENUE SERIES
sm | Xy X2 Xu s'n Xu Xa Xx s/n Xu X Xa —l
| 41 24.78 0.00 24.78 | 81 22,59 30.71 -8.12 w
2 0.39 0.30 0.09 42 -16.93 -143 -15.50 | 82 50.74 -5.69 5643 |
3 -1.91 -1.21 -0.70 43 7.02 9.75 -2.73 83 -48.62 11.81 -60.43
4 0.70 2.58 -1.88 44 79.30 90.65 -11.35 | 84 52.33 8.86 43.47
5 4.09 -1.22 -2.87 45 3.79 -69.26 73.05 8s -43.30 | -31.18 -12.12
6 4.35 3.09 1.26 46 174.75 139.03 35.72 | 86 7545 -58.35 133.80
7 1.23 -3.51 4.74 47 -176.52 | -101.04 -75.48 | 87 73.60 136.35 -62.75
8 13.66 6.81 6.85 48 -88.44 -63.53 | -24.91 | 88 - | -67.25 -14.47 -52.78
9 4.13 -3.28 -0..85 49 188.36 185.39 2.97 89 -62.83 -29.62 -33.21
10 | 4.39 4.29 0.10 50 39.11 54.04 -14.93 | 90 25.49 2.60 22.89
1| 322 4.79 -1.57 Sl -118.25 | -230.30 112.05 | 91 525 -58.10 63.35
12 | -8.51 -0.98 -7.53 52 -38.26 4.68 -62.94 | 92 -57.88 13.10 -70.98
13 | 5.62 1.09 453 53 -41.76 -71.71 -34.05 | 93 30.41 -71.67 3808
14 | -13.03 | -6.87 -6.16 54 -14.49 4399 12050 | 94 58.78 2.85 55903
15 | -1.99 0.36 -2.35 S5 27.83 32.84 -5.01 95 -74.07 | -4.84 -69.23
16 | 1.30 -1.28 2.58 56 6.21 <38 24 4445 | 96 -76.89 | -34.11 _-32_18‘*
17 | 5.76 -2.33 8.09 57 -55.00 -14.08 -30.92 | 97 101.05 | 79.85 _%;I 20 ]
18 ] 6.02 2.96 3.06 58 12.36 37.99 -25.63 | 98 2.19 22.61 -2042
19 | -13.08 | -10.00 -3.08 59 4261 -3.52 46.13 99 100.30 | 12.58 1 87.72
20 | 6.29 1.93 4.36 60 | 62.42 §5.11 731 100 | 8461 67.20 T 17.41
21 | -5.10 -3.92 -1.18 6l 9.9] 66.45 -56.54 | 101 -5.34 -26.02 20.68
22 | -2.96 0.31 -2.65 62 -59.82 -57.16 -2.66 102 | -138.61 | -31.83 -103.78
23 | 1.36 4.74 -3.38 63 -22.96 -26.40 3.44 103 78.38 9].41 -13.03
24 | 6.27 1.86 441 64 64.65 88.98 -24.33 | 104 146.71 | -3.82 150.53
25 19.14 13.55 441 65 -66.99 -87.19 20.20 108 | -78.43 -44 .42 -34 01
26 | 423 1.05 3.18 66 -83.97 -83.22 -0.75 106 | 64.15 76.37 -12.22 !
27 | 22.50 23.70 -1.20 67 43.81 41.31 2.50 107 | -130.03 | -178.99 48.96
28 | 4.68 -3.47 8.15 68 38.85 38.05 0.82 108 | 32.07 125.16 -93.09
29 | 26.90 15.85 11.05 69 | 0.00 0.00 0.00 109 | -114.67 | -61.65  -53.02
30 | 1662 13.32 3.30 70 -35.08 -83.39 48.31 110 | 9148 2218 69.30
31 | 536.64 30.57 6.07 71 4.56 64.99 -60.43 | 111 37.77 21.07 16.70
32 | 63.11 53.32 9.79 72 17.49 -22.73 40.22 12 | -77.33 -0.78 -76.5% |
33 | -21.69 | -32.44 10.75 73 9.10 -19.13 28.23 113 | 65.86 S84l 74N
34 | -27.73 | X435 -52.08 74 <10.35 38.70 -4908 | 114 | 75.09 -33.06 108.15
35 | 60.94 49.06 11.88 78 14.03 10.93 3.10 1S 1-194.68 | -11833 | -76.3°%
36 | 11161 115.36 -3.75 76 -59.80 -64.25 4.45 116 16979 | 17604 | -6.23
37 | -199.88 | -188.24 -11.61 77 98.60 112.74 -14.14 | 117 | -95.54 AR E I k)
38 | -17.57 | -41.67 24.10 78 -47.21 -43.20 -4.01 118 | 2641 ! 58.55 (=32 04
39 | -18.23 | -1646 -1.77 79 | 439.18 436.68 2.50 119 | 75.56 19.52 [ 56.04
L30 | 8411 1 6166 -10.55 80 47261 47343 | 0.82 120 | 21832 | 19390 j 2442
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