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ABSTRACT

This investigation is concerned with the solution of a nonlinear dynamical system where the
coefficients of the ensuing differential equations are dynamically slowly varying. The formulation contains
two small but mathematically independent parameters on which a generalization of Linstedt-Poincare
perturbation procedures are executed based on asymptotic expansions of the variables. To the order of the
accuracy retained in this work, it is deduced that the dynamic buckling load of the structure investigated is
dependent on the first derivative of the load function evaluated at the initial time.
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1. INTRODUCTION

Nonlinear dynamical systems with slowly varying coefficients were first investigated by Kuzmak
(1959) in a study that was limited to formulations that yielded second order differential equations. Later,
Luke (1966) extended the investigations to include formulations yielding higher orders differential
equations. Much later, similar studies were initiated by Kevorkian (1987), Li (1987) and Amazigo and Ette
(1987), among others.

In this paper, we extend the work of Danielson (1969) on the dynamic buckling of an elastic
quadratic structure under a step load, to the case where the loading history is dynamically slowly varying
over a natural period of vibration of the structure.

2. Formulation

In his investigation, Danielson (1969), considered a two-arm simply-supported column, each of the
two arms of length L, with a mass M attached at the meeting point of the two arms of the column and

from where a nonlinear spring, with spring constant A . is attached, (Fig.1).
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The nonlinear spring exerts a force per unit length of I\'I(X —a X") . where « >0 is a constant and \'(7')
is an additional displacement from the equilibrium position . The entire column is deemed rigid and

weightless and carries another mass A/, and yet , ‘another spring , with spring constant K, on the axial

direction from where a force F(7') is directed at the entire system , with T as the time variable . The role of

the mass M, and spring with spring constant A, ,is to initiate a pre-buckling motion X, (1) We let the

initial displacement , otherwise called the initial imperfection ,be represented by .\".Danielson derived the
following coupled equations for the dynamic equilibrium of the structure, which we have here refined with

the inclusion of an explicitly time dependent slowly varying load function /(7). thus:

l d:‘: z I\’() =z ~ = PR e
= dr*“h -/.Vm(;. +28)= 7 1(7) (2.1)
0 i
o -5)-az + s (g P 4 28)= 2, (2.2)
o] d1 A
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Here, 4, .is the classical buckling load, while 4 is a nondimensional load parameter that has been
nondimensionaized ‘with respect to the classical buckling load /., and thus satisfies the inequality

0< 4 <A, ,while a is the imperfection sensitivity parameter .If we let / = o,T , we get

dz“fu t:. K() =\ N "

Y ) ' P ' 24
7T e /{(.s.(s. ¢) ( ) (2.4)
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We consider 0 <o <1 . 0<Z <1 and note that » and - are two smali parameters that are not
related mathematically. We consider the load function f'[ﬁi) to be continuous and slowly varying over a

natural period of vibration of the structure. It also possesses right hand derivatives of all orders at /=0 and
satisfies the following conditions

F0)=1.1f51)I<1, for i>0 (2.7)

Except for equation (27) . /‘((ﬁ‘f) is strictly arbitrary Our intension s to solve the equations (2.4)-
(2.7) . and by so doing. obtain the dynamic buckling load - of the structure We define the dynamic
buckling load 4, as the largest load parameter for which the solutior of eguations (2 4)-:2 7) remains

bounded for all time ¢ > 0. According to Budiansky (1966). and Amazigo and Ette (19871 the condition for
obtaining /4 is the maximization '

dA
—— :0 "f:l :‘-:

— 0a (2.8)
de, ) ‘

=
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where £,, and ¢’,a are the maximum values of 50( ) and ;,( ) respectwely which are the pre-

buckling mode and the buckling mode in that order mentioned .Analysis enunciated here is a comblnat!on
" of various techniques developed by many authors , including Wang and Tian (2002a,2002b, 2003),Wei et
al (2005) and Batra and Wei (2005), among others. We now initiate an asymptotic solution of the problem

‘with a view to first determining £, , as in (2.8).

3 Asymptotic solution

d’¢,
di’
the result that , from (2.4) and (2.5),we now have : | ’
fo( ) 'V(at)"' (§| +2§) : (3'1)
a C8 0% (1-1)-0% [a+ ’if] - QFif (32)
£0)-£(0)- ) _40)_, 63)
where (3.2) is obtained by subsmutmg (3.1) in (2.5) . We now let
r=58t -3(; (1-1f(5t)) =(1-4 (@) )2 ; t=?+—2—_{u,(r)§ +(DE +- (34a)
1(0)=0,i=1,2,3;- » (3.4b)
Thus we now have
d ! - - '
e R T 39
e =0 20 AP ¢ B o i i wf e

’

! 3 3 2 Af " #E2 .
+25{(l"‘f)2 +ﬂ|§+ﬂ2§2+”'}§k.u+5 $hrr FO - ———+ U E+ ™+ 05, (3-6)

2(1- A1)
where k =0.1, and fid(—) =( ) . Here, a subscript following a comma indicates partial differentiation. We let
t .
&52.2.¢"Lr)E's | (3.7)
1=l j=0

wherethe i j ,asin '’ are superscripts and not powers. We now substitu_te (3.5 aﬁd (3.6) into (3.2) and
get the following equations of integral orders of &'’ :
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Lé«m _4«10 +OY = 0B(r), [B(I’)- Af ] | a | (3.8) E
- Af _ :
1= ) e s M - o (39)
12 _ . ~i 1 Af’(l_lf)_i no_ ;]:)r ‘ : .
L™ =242 ¢0 + T T (3.10)
20 _aQZ(é’IO)z (1 _ -g T -
LG == A A i (3.11)
u_2aQ7g"" o ey ew A (l M)
L VA MY uig - 20-ar) e+ A -
_lulné’,/ _/’ll'é’,lr (312)
l-Af 1-Af
N 10 #12 1 A K 7|A af 1 ;
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- f 2
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I-Af 1=Af 1-Af '
The initial conditions are evaluated at (,7)=(0.0) and are given as follows: ,
g'<'=05=123 j=023. -;;,°=0 - (3.144)
CPe(l-2) c"_o ;l“+{|./) (0} =0 (3.145)
;?,"+(1-1)‘» S (i- ,1) 0.:5=p-1.p=123.- (3.14¢)
We now solve (3.8), using (3.14a) and get
$"r)=a(r)cosQr+ B (r)sinQr+ B 1a,,(0)= -B,.8,(0)=0:B, =1—’1I (3.15)

We substitute (3.15) into (3.9), and to ensure a uniformly valid solution in the time scale ¢ , equate to zero
the coefficients of cos(Jt and sin{J t and get the following respective equations

o ABe o Aa, v o '
Ao ga-an =0 T aaoa " (3.16a)
On solving (3.16a) using the last part of (3.15), we get ,
1-1Y) B:7'(0) .\ B,f(0
,B”)(T)=0;&1(,(T)=—BO[W], am(o):_ . 4(. );B(O)= ;{/(1) (3'16[7)

We now solve the remaining equation in the substitution into (3.9) and get

gil(’»r)zall(T)C()SQt+:Bll( )San{ an( ) 0 ﬂn( 0)=-

We next substitute relevant terms into (3.10), and to ensure a uniformly valid solution in t, equate to zero
the coefficients of cos(Vt and sin(J t and get the following respective equations:
, 1B al o, Ma,,
/}”"4(1-/‘/;=_M_”‘ o e 4(l-//»
) 2001=41)°

B,/ (0)4-4) .17

0 (3.184)

On solving (3.18a), we get
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Bu(c)= (- ir) +{0- ) 4, (0)- [~ Of“’“il-d-s—-J- a,(r)=0 (3.185)
P00 = Af(s)? !
So far we have

10

J=a,cosQt+B S = B, sinQt (3.19a)

We now substitute for .''* from (3.19a), into (3.11), and to ensure a uniformly valid solution in 7, equate to
zero the coefficient of coth and get '

u'(r)= - Ba,(, . ‘(0) Bil ‘ 1,"(0]: af'(O)B‘f(4+/1) (3.191,)

(1- Af): (1-2): a(1-2):
The remaining equation in the substitution into (3.11) is
2 2 i
L= (ﬁf){n. PRI } £*(0.0)=0.7(0.0)+(1-2) 2 (0} (0:0)=0  (3.200)

r, = “7 . (0)= 33‘7 (3.20)

0

The solution of (3.20a,b) is

£ )= (osQr By ringre ,1){’0 A } (0=~ £0)=0 (21

We next substitute into (3.12) and to ensure a uniformly valid solution in /, equate to zero the coefficients
of cosQt and sin()1 and get the following respective equations

. A.’/ﬂ‘(l ’ /i/a*ll
N ——————'——_—0 M ,“——'—"~=—H 322
' 1 o).
1 2 na,, o , a B, f'(0
If(l‘)= [T:_;];—] J((IQ[}“B'i' lzl‘ +/l|am}+(~)/”1=/l:J- H(O) ﬂ (2221’)
) L 8
r :230 +(4+/i')+‘2(|+”u)+ - 7”«» I L (3.22(')
(- (-4 | :
If we solve (3.22a-c), we get
1 ! i )
Bu(t)=0 ta,(t)=0-4r) - {(I —~A)ia, (0)- I(l — Af(s))s H(.s')ds} (3.234)
B(l /’(O) ] -y )
. (0) R P 3236
@) T20-4) " 3rl-2); (-230)
The remaining equation in the substitution into (3.12) is
| |
Lo =8 sin2Qt 27(0.0)=0 .2 (0.0)+ (1= A) 22 (0)(0.0) + (1= £) 22 °(0.0) = 0(3.24a)
=[2ao-‘a.oﬂl, } _Walay)  iQaj, (3.24)
Py | R} =
(-4 M- 4F) 6= A1)
On solving (3.24a,b) we get
e ] . S sin2Q t .
SMr)=a (t)eos g v+ po(r)sin Ot - 30° — . u. (0)=0.8,(00)20 (3.25)

We may not particularly need the value of [33,(())in subsequent analysis. Thus far we have
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4, Maximum dasplacoment and dynamlc buckling load
The condition for.the attalnment of maximum displacement is

5.0 ru)+(] l(fr ))'llul(r )‘:M/( ru)+b‘7|r( TG } O‘ 4])
where 1 and r, are the values of 1 and r respectively at maximum dlsplacement We let r and r be th‘e'"mﬂf"

values of 1 and ¢ respectively at maximum displacement Z, of ;,(r.r), and now adopt the following
series

o) (4.2a)
)~- (4.2)
QN Si ) : - (4.20)
LS50, + .)+rfﬁy, B (4.2d)
2, we have the following

+01,

fnl
~
2

Qfa

to+ 81, +E(

1o

~
1l
—
'\
(%
\/

)+
Z»+5Z\|+‘~(|n+5, +- ) Jf—
=0, 480, + & (,“+51 ) EC

=0t _5{10+51‘,,+H(

If we substitute (4.2a-d) into (4.1) and equate the coefficients of 2 :’_f.f:an

A 1o

respective equations evaluated.at (1,.7,)=(r,.0):

1 ) :
SV =0 It (=2l =0, S A (1= A (O) " =0 (4.3a)

P

l?(l‘:,l1“1 l'»: 1,: + (l - /L) /l (())'ln: l;l)x = (43b)

From the first equation in (4.3a), we have v
[, = — 444
Q >Vi«m,,( )
Where we have taken the least nontrivial value of 7, . From the second equation in (4.3a). we have

1.

I' " : 0 |
’”i :__'[t“gll(l [lllr (1 _/{).’ /Ir)

10
[ (1,,.0)

0){4 1)- (4+zx1_z)2} | (;.4h)

4Q
From the third equation in (4.3a) and equation (4.3b) we have I
T =0 (44‘)

Meanwhile if we substitute (4 2a-d) into (3.26). evaluated at (r.7)=(r.r,). we have the following,

evaluated at (r,.7,)=(r,.0)
g - E{;m S ( 11 +IA“g Iyu)}+g‘ ['., 08 {;m:m ,mc::u N ;();7?4;4_ C:l }]

0(z5°)+ 0(25) 6
Terms not included in (4.5) will automatically vanish on substitution.
We thus need to evaluate the terms «, .t,, .t,, and r, , some of which will be used later. From the

second term in (3.4), we have
os)r" (o
{(o $)/(0)+ ");—(?1

’N.szj.(—//(hs)) ds = (1~ 2): J‘{ ‘,(1 - |
77 Hf’ )'(0)+ w}m}

:(1_;.);[[‘1— "(li Z){ = £(0)+ - }]+() (fJ) (4-6)

If we substitute into (4.6) for 7, and 7, from (4.2b,c) and equate the coefficients of O(1). 0.2 and &° we
get the following respective values
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= 0= AR =02 =0 2 == 20 6

If we evaluate the last equation in (3.4a) at maximum values, we have
o=+ )i, 4 (4.3)
On substituting for 7. { and 7 into (4.8) from (4.2a-c) and equating the coefficients of & .5. o F and

we get the following respective values

o

"“ — ”- .7“‘“ . i“l - ’”I_w_A / l ~ - (1 I;(;’() - .: (1( I;(;’l(i (4.())
0@ - 4): (1 - /) 4(]-/) (l—/) -4
If we simplify (4.5) using all the relevant terms so far evaluated, we have
- 8¢
=B Ao ALY B s AL (+.10a)
3(i-4)"
N 14+ 2) i (4+/)n, o .
A A)= 5 A (4) = S, s =44 - 4)=-3n0-4) (4.10h
ll( ) ’4(]_.) ,;( ) ‘V’I}(I | ()4(1_/’1) ( ) ‘_( ) ( )

Meanwhile if the values of 7.7 and 7 for 7, to attain the maximum Z,, are respectively given as / .r_and

I( . then , from (3.1) . using (3.6). we have

- PEFT IO [\"“E: -l ¥ )il - —ll
;u;uz/it(()t\;)"_ ; [($I T+25' ") ”(“I +I} e (4]”
A - ,
The condition for =, to attain 7, is
1
R I (NI Yt NN (I FX I (e )}: 0 (4.12)
We let / be the value of 1 at the maximum . = and now assume the following asymptotic series’
(=T, 48T, +E(1, +0T, +- )+ (T, +8T, +-)+-- (4.13q)
=T, +¢>|,+_(7,“+o“|‘ )‘f(r FOT, 4 )+ (4.13h)
i‘ ST+ 8T+3(T, +8T, v )+ FT + 5T, v ) (4.13¢)
=0 =5\T,+8T+Z(, +oT, +- ) I A A PO N CH E X))
On substitutmg (4 13a-d) into (4.11). we have :
G = A+ ST 10) )+ 220 17O, + 2 [(;"')' R B S N Y
’ (())I}ti+;ll(Tw|‘W+A“l 1{ l P l (4]_‘)
. ~ ‘u
.M

where terms not included in (4.14) will vanish on substitution Thus. we need to determine ff, .’"i',‘, and
I Analysis using (4 12) shows that 5 and . attain ther maxima at same values of the independent

variables. Hence we have 7 =1, .'i} :i., L=t .’I.',‘, :ih, and ’I"_.,‘ i,. Thus. on simplifying (4 14) we
have
L (4,/)01; 1)1

I, (l +o T, 1) )+/. S f (U)l " [413 B +1)+ 20 1'(0) e
/-, 4 )

is T,
PGNP (4.10
- H )
Using the second equation in (2.8). the net maximum displacement. - now becomes ( from (4 10a.b) and
(4.16))
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& =& - A+ 8T, 170) )= CE+CE 4o o L (4ama)

[ =2B,(1+51(0)4,,(4)).C ;‘1’3 [[+4,(A)+5F (o) «(2)] (4.17h)

_ ’”:10 _ ( ) 0 .
A.;;(A)-{A,.uwm] 1= 22 5 1) (.17
T B PR SLIEC R S

We note that the term /1(1 +8 Tkof'(O)) is O(1) in &. To determine the dynamic buckling 4,,, we use an

equivalent form of the first of (2.8) which now becomes —dzi =0.As in Amazigo and Ette (1987), we note

5/"
' ~‘~re invoking the above maximization, we first have to reverse the series (4.17a) in the form
o dE HdE (4.|‘)a)
By substituting in (4.19a) for , , and equating the coefficients of & and &, , we get
1 C,
d, = ok d,=-—% . (4.196)

T di . .
The maximization ;:— =0 easily follows through (4.19a), to give

=m

z _ = 2 _ dl _ (‘1J .
bml)_‘:‘m(/t/))_I— 2(,2 (4.19()
where £ . is the value of £ atbuckling (i.e. at A =4,,). On evaluating (4.19a) at 4 = 4,,, we get
£ = %&’)) (4.19d)
2 D
If we substitute into (4.19d) for C',(4,,) and (',(4,.) from (4.17), we get ‘
, g ; £ (¢ '
(1_21))_=16aﬂ11) 1+A44(/,‘))"+(H (0)1..(4,,) (4.20)
3 1+6£'(0)4,,(4,)

5. Analysis of result and conclusion
If we neglect the inertia terms in (2.1) and (2 2) or in (2.4) and (2.5) and set f( ) , we have the

equivalent equations characterizing the static theory. The static buckling load A, is obtained from the

maximization d—j =0 and this yields
S

al

L

K,&
(1-4,) =4a’, {1+ J (5.1)
If we eliminate the imperfection parameter f from (5.1), using (4.20), we easily get

1- 4, Jz _ 4{4_,\,}[1+A44(A,))+5f' 0)4(4, )}

1- A 3L A 1+of' (O)An(in)
~ !
K LS (0A(4,) } | (52)
L ]6(1-/1(')'/) ]+A44(’2“/‘)+()f (0)4“(21)) J

If the loading were a step load, then 7 "'(0) «.forn>1so that the step loading results corresponding
(4.20) and (5.1) are given respectively as
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(1"3'0)2 :@3—5'@_(1 +A44(’ln)) (5-33)

[1—11)]2:i[éﬂ](l+,{“(gn)){l+ 3K,

-1
-4 3\ A 16‘22}'(‘}“0 {1 + Ay, (’11)) }:|
Thus , given the static buckling load A, we can easily calculate the dynamic buckling load 4,,( and vice
versa) ,without necessarily performing the arduous task of repeating the entire process for different
imperfection parameters. If, in the step loading case, we neglect the second spring with spring constant
K, (Budiansky’s problem, (1966) ), we get the following results ,from (4.20) and (5.1) as

(1-4,) = 16654, and (1-4,) =4ar & (5.3¢)

-
b

(5.3a)

On eliminating the imperfection parameter in (5.3a) we have

3(1-4, ) (i)
ol BTN AT 5.3d
4[1_’1,\] [’J' J ( )

S

Equation (4.20) is valid provided |4,,(4,,)+ & f'(0)4(4,)|<1. and
|51 (0)4,,(4,)[<1. In addition to the above two inequalities, equation (5.2) is also valid if

3K, { 1431 (0)4,,(4,,) }<1

1624 A, |1+ A3,(2,)+3 £ (0)4,(4,)

Danielson (1969) obtained the following resulits for the step loading case:

A |3 !_,,"’%L’_ for0<| v <l (5.4u)
Ay 41~ 4, @, 2

)

1 4 _( @, ] .

A 6 o) 1 ((!) 0

L= for < —'1 <1 (5.4b)

Ay 10 o, > -

’l\‘ + (1 - ’lh)
' 9\ o,

We remark that Danielson used the method of Mathieu-type of instability, which as noted by Budiansky
(1966, page 100), is always associated with many cycles of oscillation, as opposed to just one shot of
oscillation that normally triggers off dynamic buckling Thus, we expect our results (5.3a,b) , for the step
loading case , and other results such as (4.20) and (5.2) , to be much more representative of the buckling
process than (5.4a,b) We must however note the exact correspondence between our result (5.3d) and

L), /

\

Wy,

“~

Danielson’s result (5.4a) in the interval 0 < [ﬂ] < ‘However the method of Mathieu-type of instability

used by Danielson cannot account for explicitly time-dependent loading history in which our method has an
overwhelming advantage .
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