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ABSTRACT 

 
In representing a relationship between a response and a number of independent variables, it is 
preferable when possible to work with a simple functional form in transformed variables rather than 
with a more complicated form in the original variables. In this paper, it is shown that linear 
transformations applied to independent variables in polynomial regression models affect the t ratio 
and hence the statistical significance for certain parameters of the polynomial regression models. 
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INTRODUCTION 
 

Transformations in experimental, mathematical and statistical work have found use in two 
major areas: 
i. that of providing theoretical approximations, and  
ii. that of bending the data to conform to assumptions underlying conventional analysis. 
 
The usual techniques, according to Draper and Smith (1998), for the analysis of linear models as 
exemplified by regression analysis are usually justified by assuming: 
1. Simplicity of structure for average values  for the dependent variable, y, 
2. constancy of error variance about these average values, 
3. normality of distributions, and 
4. independence of observations. 
 Bates and Watts (2007) reported that if assumptions 1 and 3 are not satisfied in terms of 
the original observations, y, a linear or non-linear transformation of variables might be desirable to 
produce the simplest possible regression model in the transformed variables. 
 In regression problems, assumption 1 might be that E(y) is adequately represented by a 
rather simple empirical function of the independent variables x1, x2, …, xn and we would want to 
transform so that this assumption together with assumptions 2 and 3, is approximately satisfied. 
Each of the assumptions 1 and 3 can and has been used separately to select a suitable candidate 
from a parametric family of transformations (see Neter, Wasserman and Kutner, 1989). The 
majority of the literature on transformation is concerned with transforming the y’s to achieve 
simplicity when the necessary assumptions could not otherwise be realistically made (Hocking, 
1983; Bates and Watts, 2007).  Most emphasis has been placed therefore on transformations of 
E(y) which may be expected to stabilize the variance or reduce the regression function to linearity 
in the parameters. 
 In regression problems, one can transform both the dependent and the independent 
variables (Bernhardt and Jung, 1979).  It has been pointed out in Weisberg (2005) that replacing 
either the dependent, the independent, or both by nonlinear transformations of them is an 
important tool that the analyst can use to extend the number of problems for which linear 
regression methodology is appropriate. However, when the independent variables are 
transformed, it is shown in this paper that additivity is a concern in tests of statistical significance 
for individual parameters. 
 
TRANSFORMATIONS ON THE X’S 

Suppose we have a model under consideration, which can be written in the form 
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  Y = xβ ε+ ,          (1) 
where Y is the nx1 vector of dependent variables, x is the nxk matrix of independent variables, β is 
the kx1 vector of parameters to be estimated and ε is an nx1 vector of errors.  In the present 
investigation we suppose that the errors in the Y’s are at least approximately normally and 
independently distributed with constant variance σ2, where E(ε) = 0 and Var (ε) = Iσ2. 
 The least squares estimators of β and σ2 are  
           (2) $ ( )β = ′ ′−x x x Y1

and 

         (3) ( ) ( ) ($ $ $ /σ β β2 = −
′

− −y x y x n k )

β β

 
respectively (Draper and Smith, 1998). 
 Consider a transformation Z = xT of the matrix x.  The transformed model becomes 
 Y= Zγ + ε = xTγ + ε   = x(Tγ) +ε  =    xβ  +  ε, 
so γ is a k x 1  vector of coefficient parameters, equal to T-1β.  It then follows that the least squares 
estimator of γ is .  Since , the two models have the same predicted  $ $γ = −T 1 Ζ $ $γ = x
values and residuals; values of R2 and  also are identical.  Since  is the same, for simplicity 
sake, let it be unity.  The respective variance – covariance matrices of the estimators   and 

$σ 2 $σ 2

$β $γ  
are  and respectively. ( )′ −x x 1 T x x T− − −′1 1 1( ) ( )  1

 
TRANSFORMATIONS IN POLYNOMIAL REGRESSION MODELS  
ILLUSTRATIVE EXAMPLE 
 
 Consider quadratic models in (4) and (5) with the transformationΖ i ia bx= + : 
 Y xii = +β β0 1 β2

2xi +    +  εi         (4) 
 Y zi i= +γ γ0 1 γ 2

2zi +    +  εi          (5) 

     = γ γ0 1+ +( )a bxi   +     +  γ 2
2( )a bxi+ εi   

     =  +  ( )( )γ γ γ0 1
2

2+ +a a b ab ixγ γ1 22+  +   b   +  xi
2

2
2γ εi  

 
From above, β = Tγ  when        1 a a2 
    T  = 0 b 2ab    , 
     0 0 b2 
 
so that 
   1 −a

b   a
b

2
2  

 T-1 = 0 1
b   −2

2
a

b     . 

   0 0  1
2b  

 
Using the previous result that $γ   =  , it follows that T −1 $β
 
 

  $γ 0    1 −a
b      a   b

2
2

$β0

 $γ   = $γ 1   =   T  = 0 −1 $β 1
b    −2     $β1

a
b2

  $γ 2    0 0    1
b    2

$β2
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2

2 2
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1
2 2b
$β  

 
Denote the elements of   by ( ,  i, j = 0, 1, 2. ( )′ −x x 1 )Cij

 
Then 
 
              C00     C01 C02 

 (   =                  C11 C12        (7) )′ −x x 1

               C22 
 
where (Cij)   =  (Cji),  so that 
 
Var ( $)γ   =   T-1    (T-1)1 ( )′ −x x 1
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 Let t (βi) and t (γi) denote the t ratio associated with βi and γi respectively.  Using (7),  
 

 t (β1)  =  
$β1

11C
 and t (β2)  =  

$β2

22C
.       (9) 

 
Furthermore, using (6) and (8), we obtain 
 

t (γ1)   =   

1 2

1 4 4

1 2

11 12
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2 22

b
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  and   t (γ2)   =  

1

1
2 2

2 22

b

b
C

$β
.           (10) 

 
We observe that t (β1)  t (γ1), while t (β2) = t (γ2).  Notice that  t (γ1) will equal  ≠

t (β1) when a is zero.  That is, the additive quantity a, in the transformation Z = a + bx is 
responsible for the non-equality of the t ratio for the lower order coefficient.  
 
CONCLUSION 
 
 The most frequent purpose of transformations is to achieve a mean function that is linear in 
the transformed scale.  Over the years, emphasis for transformation has tended to be on obtaining 
a constant error variance.  In all cases, we are concerned not merely to find a transformation 
which will justify assumptions but rather to find, where possible, a metric in terms of which the 
findings may be succinctly expressed.  Simplicity and ease commend transformations because it 
is much simpler to transform the variables, estimate the coefficients, and merely inspect the t 
ratios for possible differences. 
 It has been shown that additivity is a problem when using linear transformation in  
polynomial regression models. 
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