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ABSTRACT 

 
 The transcendental character of the polynomial equation of the retarded differential system 
makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic 
stability analysis of the system solutions.  Various acceptable mathematical techniques have been 
used to address the issue. In this paper, the integral-differential equation and the positive 
symmetric properties of given matrices are used in formulating a Lyapunov functional. The 
introduction of convex set segment of a symmetric matrix is explored to establish boundedness of 
the first derivative of the formulated functional. The integral-differential equation is utilized in 
computing the maximum delay interval for the system to attain stability. Its application to numerical 
problems confirms the suitability of the test. 
 
KEY WORDS: Asymptotic stability, positive symmetric matrix, convex set segment, integral-
   differential equation. 
 
1.0  INTRODUCTION 
 
 The presence of time delay in mathematical model equations has helped in making the 
system equations more realistic. A retarded differential equation is a functional differential 
equation with delay (time lag) incorporated only in the state of the system, which accounts for the 
past state of the system (Asl and Ulsoy, 2003).  A general retarded differential equation is of the 
form, 
       (1.0) ( ) ,.,.,.3,2,1,)(),(,)( =−= nnhtxtxtftx&
where  is the derivative of the state function x(t) with respect to time t, and x(t-h) is the time lag 
function, with h>0 defining the delay interval. 

)(tx&

 In recent years, attention has been drawn to dynamic systems whose model equations 
incorporate time delays, and many results involving such systems have been published (Hale, 
1977; Driver, 1977; Hale and Verduyn, 1993; Liu and Mansour, 1984; Svoboda, 2005 and 
Gugliemi and Hairer, 2007).  It is also of note that the survival of any dynamical system depends 
mostly on the stability of the system solution (Kartsatos, 1980).  One criterion for asymptotic 
stability of a system of differential equation is that all roots of the characteristic equation have 
negative real parts (Hale, 1977). But the special transcendental character of the polynomial 
equation of system (1.0) makes it difficult to express the solution explicitly, and hence causes the 
set back in analyzing the asymptotic stability properties of the system solution. 
 This set back has been addressed by the extensive use of Lyapunov functional and other 
acceptable mathematical techniques (Asl and Ulsoy, 2003; Cao et al, 2002; Han, 2001; Hale and 
Verduyn, 1993 and Driver 1977) in proving conditions for stability of the solution. 
 Asl and Ulsoy (2003) developed a functional called Lambert function which was used to 
solve the transcendental characteristic equation of (1.0).  Stability properties were analysed based 
on the negative value of the real part of the characteristic roots. Han (2001) and Cao et al (2002) 
utilized the linear matrix inequality properties of the system matrix equation, and proved that it 
satisfies the Lyapunov – Krasovskii conditions for asymptotic stability.  Davies (2006) formulated 
Lyapunov functional using positive definite properties of the matrix equation, and showed that it 
satisfies the Lyapunov – Razumikin sufficient conditions for asymptotic stability. 
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 In this paper, the asymptotic stability of the retarded system is addressed by the formulation 
of Lyapunov functional that satisfies the Lyapunov – Krasovskii conditions for asymptotic stability. 
The integral-differential equation and the positive symmetric properties of given matrices are used 
in the formulation of Lyapunov functional. The negative definiteness of the symmetric linear matrix 
inequality and the boundeness of the first derivative of the formulated functional based on the 
introduction of a convex set segment of a symmetric matrix is explored to establish asymptotic 
stability.  Also a condition which enhances the computation of the maximum delay interval (hmax) 
for (1.0) to assume asymptotic stability is stated using the integral - differential equation of the 
retarded system.  
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1.1 Notations  
 P is a positive symmetric matrix, I is an nxn identity matrix. En is the n-dimensional 
Euclidean space, with ⋅  as the Euclidean vector norm.  ( )n

H EthtB ],,[ −  is the Banach space of 

continuously differentiable function on [ ]tht ,−  such that { }.],[: nEthth →−   )(sϕ is a continuously 

differentiable symmetric function with norm in ( )n
H EthtB ],,[ −  defined as 

.
)(sup)(

tsht
ss
≤≤−

= ϕϕ . W is a 

symmetric matrix with diagonal elements ,01 oraii =  such that  each  defines the ith row of W, 
 and 

iw
,10 ≤≤ iw { } WywxwEyx ii

n ⊂−−∈= )1(;,ζ  is the convex set segment of W. 
 
2.0 MAIN RESULT 
 
 The aim of this section is to explore the positive symmetric properties of given matrices and 
the integral - differential equation of retarded system to formulate Lyapunov functional which will 
satisfy the Lyapunov-Krasovskii conditions for asymptotic stability.  These conditions depend on 
the negative definiteness of a symmetric linear matrix and the upper bound of the first derivative of 
the formulated functional (Hale, 1977). 

Consider an initial value problem of the retarded functional system (1.0) as 

 ,     (2.1) 
( ]

⎭
⎬
⎫

≤≤−=
−+=

tshtssx
htBxtAxtx

),()(
)()(

ϕ
&

where  is the derivative of the state function and )(tx& ),(tx )( htx −  is the delay function with      h > 
0 as the delay interval.   are constant matrices, and B is symmetric.  For a given initial 
condition 

nxnEBA ∈,
,),()( tshtssx ≤≤−=ϕ  system (2.1) admits a unique solution (Hale, 1977).   

 Assume a continuous differentiable symmetric function ( ) [ ]( )n
H EthtBs ,,−∈ϕ  as an initial 

condition of system (2.1). Han (2001) state the integral-differential equation of system (2.1) as   

  0),()()()( ≥+=⎥⎦
⎤

⎢⎣
⎡ − ∫− ttBAdssBt

dt
d t

ht
ϕϕϕ .                      (2.2) 

The stability analysis of the integral-differential equation  of (2.2) implies that of 

(2.1), (Han, 2001). 

( ) ( )∫− =−
t

ht
dssBt 0ϕϕ

 
Theorem 1  
 Let there exists a positive symmetric matrix nxnEP∈  which is the unique solution of the 
quadratic matrix equation , where matrix  and a 
continuous differentiable symmetric function .  Given any symmetric positive 
matrix W with a convex set segment ζ⊂W, such that the set 

QBAPPBA T −=+++ )()( ,0>∈ QandEQ nxn

)],([)( n
H EthtBs −∈ϕ

 ( ]{ })())(())(())(())((];,,[)())(( 21 ζϕϕϕϕϕϕ ftVandtVtVtVEthtBstL n
H ≤+=−∈= &   

which defines the Lyapunov functional of (2.1), satisfies the symmetric linear matrix inequality 
(LMI) 
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then the solution 0))(,( =stx ϕ  of (2.1) is asymptotically stable, where 
 .,0)(,, 332211 jiforandBAPBWBPBWQ ij

TTT ≠=+==+−= ∑∑∑∑  
Proof: 
Considering the integral - differential equation of system (2.1) as   and any 

positive symmetric matrix P and W, such that P  
∫ −−

t

ht
dssBt )()( ϕϕ

satisfies the quadratic matrix equation (A+ B)T  P + P (A+B) = -Q, with a continuous differentiable 
symmetric function , then the Lyapunov functional  is defined as )],([)( n

H EthtBs −∈ϕ
))(())(())(( 21 tVtVtV ϕϕϕ += , where 
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Therefore, 
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t

ht

TTTT ∫ −+−+++= )()()(2)()()()( ϕϕϕϕ

( ) dssWsBtV
t

ht

T∫ −= )()()(2 ϕϕϕ dssWsB
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ht
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( ) [ ]t ht
TTt
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dBtV −−

=⎟
⎠
⎞⎜

⎝
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 . )()()()( htWBhttBWt TTT −−−= ϕϕϕϕ
Therefore, , ( ) ( ) ( ))()()( 21 tVtVtV ϕϕϕ &&& +=
 ( ) ( ) )()()( tBWQttV TT ϕϕϕ +−=&  
               )()( htWBhtT −−− ϕϕ
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t
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TT dssBAPBt )()()(2 ϕϕ
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      Given any convex set  { } n
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n EyxWywxwEyx ∈∈−−∈= ,,)1(;,ζ  

            ( ) ( ) )()1(()()( tywxwBQttV T
ii

T ϕϕϕ −++−≤&

             ( ) )()1()( htBywxwht ii
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                  (2.6) .)()()(2 ∫ −+−
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TT dssBAPBt ϕϕ

 
        Equation (2.5) shows the negative definiteness of the symmetric linear matrix inequality and 
(2.6) shows the boundedness of the functional, and hence the asymptotic stability of the solution.  
 
Theorem 2 
          System (2.1) is asymptotically stable if for any real number ,0>δ the characteristic roots 
( ) of the fundamental matrix (A + B) of (2.2) have values i∂ ,0<∂≤− iδ  such that the integral–
differential equation of (2.2) at  

t = 0 satisfies the determinant equation, 01det
max

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
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−∂heBI  . 

Proof: 
 Assume (2.1) to be of the form 

 kFtFBAtF
dt
d

=+= )0(),()()(        (2.7) 

Let us choose a constant non singular matrix T, such that the transformation 
          (2.8) ,)(1 DTBAT =+−

where D is an upper triangular matrix.  By change of variable, we defined  so that (2.7) is 
written as  

,)( TytF =

 kyDy
dt
dy ′== )0(,         (2.9) 

kk ′  and  are constant real values. System (2.9) has a matrix form;  
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where  are the characteristic roots (Gourlay and Watson, 1973).  Assume 
Re , then  

jiij =∂ for    ,
niii ,....2,1,0)( =<∂

                         (2.10) t
nn

nneky ∂=
and  as  This implies asymptotic stability Hale(1977).  If  Re  then ,0→ny .∞→t ,0)( >∂ ii ,∞→ny  
as  which contradicts the concept of stability . ,∞→t
 Consider the difference–integral of (2.1) defined as  

        (2.11) .0,0)()( ≥=− ∫− tdssBt
t

ht
ϕϕ



  
Assume t = 0, then (2.11) implies 
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 . 0)0(
0
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Integrating the equation, we obtain 
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3.0 NUMERICAL APPLICATION. 
 
1. Consider the retarded differential system, 
         (3.1) ),()()( htBxtAxtx −+=&

where 
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 Assume matrix Q is an identity matrix, so that the quadratic matrix equation is of the form (A 
+ B)T P + P(A + B) = -I. Resolving the quadratic matrix equation for P being positive symmetric as 
follow; 
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and substituting the values of c11, c12, c22 from matrix C, the positive symmetric matrix P is 
obtained as 

 , and  ⎟⎟
⎠

⎞
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⎝

⎛
=

20
02

P .0>P    

Equation (2.5) and (2.6) is satisfied, for any appropriate choice of a symmetric matrix W, with its 
diagonal element aii = 1 or zero(0) and ,10 ≤≤ iw where wi define the ith row of W.  Assume 

 and recalling (2.4) for ,
10
01
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=W TTT BAPBWBPBWQ )(,, 332211 +==+−= ∑∑∑ , 

where A and B are as in (3.1), P as computed in (3.2) and Q=I as stated. Then        
∑∑∑ −=−=−= 8,1,3 332211

, 

and therefore the symmetric matrix , showing system (3.1) is asymptotically stable (see 
theorem 1, section 2.0) . 

∑ ≤ 0ii

 Also by theorem 2 the fundamental matrix C has negative real roots (∂1 = -1, ∂2 = -2).  
Therefore the maximum time delay (hmax) for (3.1) to attain asymptotic stability is computed as  
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That is for ∂1 = -2; 
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The maximum delay interval is not defined. 
Therefore, the maximum delay interval for (3.1) to assume asymptotic stability is   hmax = 0.56. 
2. Consider the time-delay system 
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System (3.4) has a general form as  
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 Assume matrix Q is an identity matrix, so that the quadratic matrix equation (A+B)TP + 
P(A+B) = -I.  The quadratic matrix equation for P being symmetric is resolved as, 
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Substituting the values of c11, c12, c22 from (3.5), the positive symmetric matrix P is obtained as  
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 The matrix P, for all real values of q is not symmetric positive, and therefore does not 
satisfy theorem 1.  Also, all real roots of the fundamental matrix (3.5) for all real values of q is not 
negative as stated in theorem 2.  Therefore the solution of system (3.4) cannot attain asymptotic 
stability. 
 
4.0 CONCLUSION 
 
 The integral-differential equation and the positive symmetric properties of given matrices 
have been used to formulate Lyapunov functional.  The introduction of a convex set segment of a 
symmetric matrix is utilized to establish the boundedness of the first derivative of the formulated 
functional which satisfies the Lyapunov Krasvoskii condition for asymptotic stability.  The integral-
differential equation is also explored to compute the maximum delay interval (hmax) at which the 
system solution assumed asymptotic stability. The results obtained show that system (3.1) 
attained asymptotic stability at hmax = 0.56, and system (3.4) has no stable solution. 
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