

GLOBAL JOURNAL OF MATHEMATICAL SCIENNCES VOL. 8, N0. 1, 2009: 49 - 63

COPYRIGHT (C) BACHUDO SCIENCE CO. LTD. PRINTED IN NIGERIA. ISSN 1596-6208

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A
DEVELOPING IT ECONOMY

 I. I. ARIKPO and A. O. OSOFISAN
 (Received 5 November 2008; Revision Accepted 4 March 2009)

ABSTRACT

Software project management is the control of the transformation of users’ requirements and
resources into a successful software result (product). This work automates the management of
software projects in an emerging IT economy like Nigeria. It also explores the simulation of
management practices such as configuration management and risk management. The COCOMO
II model was employed for the estimation process, while the Risk Model from The American
Systems Corporation (ASC) was used for risk management. Experimental data was obtained from
AcadSoft Solutions, Calabar, Unical Computer Centre, and OmegaBiz.ng Software Solutions &
Consultancy, Calabar. The resultant network-based software tool was developed on object-
oriented technology using Java. The study established that good management practices may still
be applied by the Nigerian software industry that lacks expertise in software management. Multi-
site development approach facilitates large projects by using simple network-based application
that aids collaboration among team members. Future research could extend to system and real-
time software projects, to give a holistic picture of software project management in developing
countries.

KEYWORDS: Software project management, configuration management, risk management, multi-
 site development.

1.0 INTRODUCTION

 Software Project Management can be defined as the responsibility for producing desired
software with acceptable limits of resource usage. It encompasses the knowledge, techniques
and tools to manage the development of software products (Tomayko 1989, p.4).
 In his book on Software Project Management, Page-Jones (1985, p.1) made the statement:

“I’ve visited dozens of commercial shops, both good and bad, and I’ve observed
scores of Data Processing managers, again both good and bad. Too often I’ve
watched in horror as these managers futilely struggled through nightmarish projects,
squirmed under impossible deadlines, or delivered systems that outraged their users
and went on to devour huge chunks of maintenance time.”

What was described above is a barrage of symptoms that result from a chain of management and
technical problems. Hence, if a post mortem were to be conducted for every software project, a
likely consistent theme will be encountered: project management was weak.

 The management of software projects has led to software development failures and
successes. As the software industry keeps growing rapidly, software engineers are struggling

hard to grapple with the ever-increasing complexity of software development. Even as software
engineering remains a people-intensive process, software technologies, processes and methods
have advanced appreciably (now we have Computer-Aided Software Engineering, CASE), and

therefore, techniques for managing people, technology, resources and risks in software projects,
have profound advantage (Page-Jones 1985).

 One of the fundamental problems affecting software industries in both developed and
developing countries is poor project management. Poor project management practices is the

 49

I. I. Arikpo, Department of Mathematics/Statistics & Computer Science, University of Calabar – Nigeria
A. O. Osofisan, Department of Computer Science, University of Ibadan – Nigeria.

major cause of delays in software projects, overspending of IT budgets, and chronic problems with
dependability – safety, reliability and security – and maintainability of software products. The worst
hit are the developing countries. This makes it difficult even for indigenous software consumers
(like banks, educational institutions, government ministries, companies and parastatals) in these
developing countries to depend on local software industries for their software needs. One can
imagine the consequences of a fatal program crash in a banking software (with customers waiting)
that may require complete dismantling of the software architecture!!!

50 I. I. ARIKPO and A. O OSOFISAN

 To develop high-quality, globally-competitive, dependable and maintainable software
products, software industries in developing countries need to rely on modern engineering
practices. Such practices comprise a variety of methods, tools and techniques that are based on
sound and good software project management framework. Experience has shown that such
frameworks are closely tied to the more than five decades of computer system evolution.
According to Naisbitt (1982), the transformation from an industrial society to an “information
society” has profound impact on our lives; and information and knowledge – controlled by
computers – has become the focal point for power in the 21st century (Feigenbaum & McCorduck
1983). This work designates four eras of software evolution, as schematized in Figure 1 below:

The second era:
. Multiuser
. Real-time
. Database
. Product software

The third era:
. Distributed systems
. Embedded “intelligence”
. Low-cost hardware
. Consumer impact software

The fourth era:
. Powerful desktop systems
. Object-oriented techniques
. Expert systems
. Artificial neural networks
. Parallel computing

The early years:
. Batch orientation
. Limited distribution
. Custom software

1950 1960 1970 1980 1990 2000+

Figure 1: Evolution of software

 Some Developing Countries such as India, has consolidated its software industry (example,
Bangalore), while countries like Nigeria are just struggling to locate and position their software
industry compasses. This is partly because, in Nigeria and some other developing countries,
software development is undertaken mostly by non-professionals – people who just see software
development as a program-writing activity and not a management and development task –
because there are few software engineers available; while in India, software development is left in
the hands of professionals, as India turns out approximately 290,000 engineering graduates
(including software engineers) annually from her universities across the country (Radhakrishnan
2004, p.2). Besides, New Delhi-based NIIT alone has graduated over 200,000 Indians from its
programming courses (Gibbs 1994). This is a major source of strength for India’s software
industry and accounts for over $5 billion worth of her software export services (Jalote 2000).
 However, in the last five decades, software systems have evolved into a more complex
routine. Some systems have over 50,000 lines of high-level language code, hence, the
management of software systems often lead to “software crisis” (Gibbs 1994). Thus, the need
arises to develop procedures that can handle, among others, the development processes and
maintenance of software.

2.0 OBJECTIVE AND SCOPE OF RESEARCH

 The purpose of this work is to come out with a software tool that will encourage a
disciplined and management approach to software development in a developing IT economy like
Nigeria, taking into consideration such infrastructural constraints as low technical manpower. The

web-based tool will also facilitate team participation and management in software projects, as
against the “one-man” project approach commonly practiced in most developing countries.

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A DEVELOPING IT ECONOMY 51

 As software is complex and dynamic, so is its management. Software project management
is not very straightforward. Every software project has its own peculiarity, and unnecessary
generalizations can be misleading.

This research work is therefore not exhaustive. Each developing country has different
constraints, which in turn impact differently on the management of software projects. Besides,
within the developing IT economies, some countries (e.g., India, Malaysia, Singapore, etc) are by
far ahead of others (e.g., Nigeria, Ethiopia, etc.), which makes it difficult to develop a generic
project management tool that will fit into, and address all project management problems in all
developing countries.

In this study, the researchers are more concerned with countries like Nigeria, which are just
emerging and trying to evolve their respective software industries. The resultant project
management tool is targeted at these countries. This does not suggest complete automation of all
the facets of software project management of countries in this category. Some basic knowledge of
software projects is assumed, because, there are many aspects of project management that
require human judgment.

3.0 STATEMENT OF THE PROBLEM

 Software is expensive to develop and it is a major cost factor in corporate information
systems’ budgets. With the variability of software characteristics and the continual emergence of
new technologies, it is becoming more difficult to correctly estimate software development costs.
For products developed for mass markets, such as Microsoft Office, the cost of development is not
visible in the price of the product. However, for bespoke (custom) development, the software is
targeted for one or a small number of customers, and therefore development cost influences the
price. It is of strategic importance for an organization, whether as a customer or a developer, to be
able to base its purchase or sales decisions on the ability to estimate the cost of development
correctly and consistently (Page-Jones 1985).

Effective software project estimation is one of the most challenging and important activities
in software development. Proper project planning and control is not possible without a sound and
reliable estimation. As a whole, the software industry does not estimate projects well, and does not
use estimates appropriately (Page-Jones 1985). From the point of view of the researchers, “we
suffer more than we should, and as a result we need to focus some effort on improving the
situation”.

4.0 RESEARCH METHODOLOGY

 The methodology adopted in this work is to conduct an extensive study of software
industries of some developing countries, including Nigeria based on the basic activities in software
project estimation as shown in Figure 2 below. While for Nigeria, a survey of some software
organizations was done and an observational methodology sometimes adopted, where the need
arose; the researchers depended on published literature on software strategies of other
developing countries (Tessler & Barr 1997). Besides, a comprehensive study was conducted on
estimation models and other software management components (e.g. risk management) in
developing countries vis-à-vis infrastructural constraints.
 An implementation-driven methodology was then employed to demonstrate the software
tool resulting from this research, using some sample software projects.

52 I. I. ARIKPO and A. O. OSOFISAN

Figure 2: The Basic Project Estimation Process

4.1 BASIC TOOLS FOR SOFTWARE ESTIMATION

a. Estimation Model Adopted

This work adopted the COnstructive COst MOdel II (COCOMO II) developed by Boehm
(1995), for the estimation of software projects.

We acknowledge the fact that, there are many software estimation models, such as Putnam
Model, Top-down Model, Bottom-up Model, etc. Most of these models have some major
weaknesses. For example, one significant problem of the Putnam model is that it expects the
estimator to be able to estimate accurately the size (in lines of code) of the software to be
developed. The uncertainty (especially in the early stage) in the software size can easily lead this
model to produce inaccurate cost estimation. The Top-down model provides no detailed basis for
justifying estimation results, and tends to overlook low-level software development components.
The Bottom-up model on the other hand, has as its main weakness, the fact that, it may overlook
many of the system-level costs (integration, configuration management, quality assurance, etc)
associated with software development (Wu 1996). In the light of the foregoing, we adopted
COCOMO II because of the following features, some of which are its major strengths over others:

 It focuses on issues such as non-sequential and rapid development process models (which
are common in developing countries); reuse-driven approaches involving Commercial-Off-
The-Shelf (COTS) packages, reengineering, applications composition, and application
generation capabilities; object-oriented approaches supported by distributed middleware;
software process maturity effects and process-driven quality estimation.

 It is parametric, and allows important aspects of the software project to be characterized by
variables (or parameters).

 Once the values of these parameters are determined, the project can be estimated.
 It is ideal for modern technology and software process management.

b. Basic Model Equation

The COCOMO II basic model equation comes in two versions: Version 1 for Early Design
Stage and Version 2 for Post-Architecture (Baik 1999).

PM = A(Size)1.01+∑ × 1
=

5

1j
jSF ∏

=

7

1i
iEM

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A DEVELOPING IT ECONOMY 53

PM = A(Size)1.01+∑ × 2
=

5

1j
jSF ∏

=

17

1i
iEM

where:
PM – Effort in Person-Months
A – Constant (kept at 2.45 as at now)
Size – Estimated size in KSLOC (Thousand Source Lines of Code)
SF – Scale Factor
EM – Effort Multiplier.

 The early design model (Eq. 1) is used in the early stages of a software project, when very
little may be known about the size of the product to be developed, the nature of the target
platform, the nature of the personnel to be involved in the project or the detailed specifics of the
process to be used. The early design model adjusts the effort using 7 EMs as stated in Eq. 1.
 Equations 1 and 2 are similar, except for the 17 Effort Multipliers in Eq. 2. The larger
number of EMs takes advantage of the greater knowledge available later in the development
process. The post-architecture model (Eq. 2) covers the actual development and maintenance of
a software product.

c. Determining Project Size

There are two basic approaches to determining project size; namely; the Lines Of Code
(LOC) strategy and the Function Points (FP) strategy (Pressman 1992).
In this work we adopted the function points approach because of the following:

 Determining a line of code is difficult due to conceptual differences involved in accounting
for executable statements and data declarations in different programming languages.

 LOC approach is very unrealistic during the early design stage, in which it is not yet known
the language and platform of implementation, etc.

 The function point approach is based on the amount of functionality in a software project,
and a set of individual project factors.

 It is a useful size estimator, since it is based on information available early in the project
life-cycle.

d. Estimating Schedule
 The schedule for a software development project can be obtained from the effort estimate.
This generally involves estimating the number of people who will work on the project, what they
will work on (the Work Breakdown Structure), when they will start working on the project and when
they will finish (the staffing profile). Once this information is available, one needs to lay it out into a
calendar schedule. Historical data from an organization’s past projects or industry data models
can be used to predict the number of people needed for a project of a given size and how work
can be broken down into a schedule (Pressman 1992).

For most developing countries where software engineering practices are still at the infancy,
historical data is seldom available. A schedule estimation rule of thumb (McConnell 1996) can be
used to get a rough idea of the total calendar time required, as given in Eq.3 below:

Schedule = B(PM)1/B 3

where
 Schedule is in months.
 PM is effort in person-months
 B is a constant value adopted for the computation.

54 I. I. ARIKPO and A. O. OSOFISAN

 Opinions vary as to whether B should be 2.0 or 2.5 or 3.0 or even 4.0. Only by trying it out
will an organization see which value works best for her. In this work (including the software tool),
a value of 2.0 is used for B (McConnell 1996).

Because this research is aimed at supporting software project management in developing
countries, like Nigeria, where historical data on software projects is hardly available, the schedule
formula of Eq. 3 was adopted.

e. Estimating Cost

Many factors must be considered when estimating the total cost of a software project. In
software cost estimation, emphasis is normally placed on labour (McConnell 1996; Jones 2002).
The simplest labour cost – and the one used in this work – is obtained by multiplying the project’s
effort estimate (in hours) by a general labour rate (in Naira per hour).

However, a more accurate labour rate would result from using a specific labour rate for
each staff position (e.g. Technical, QA, Project Management, Documentation, Support, etc.).
Using this approach, the estimator would have to determine what percentage of total project effort
should be allocated to each position. This can only work well if historical data is available
(McConnell 1996).

f. Risk Management

Effective risk management transcends management’s daily activities, such as activities that
determine whether the project’s budget remains intact or if some or all of it gets traded off to
support higher priority or more politically sensitive projects. Continuous, proactive risk
management can be performed by all participants on a project, from individual contributors to top
management of the organization (ASC Corporation 2003).
Project risks are assessed for their risk exposure using Eq. 4 below:

RE = P(Ou) × L(Ou) 4

where:
P(Ou) is the likelihood of occurrence;
L(Ou) is Potential Loss (impact);
RE is Risk Exposure.

 As shown in Eq. 4 above, our work defines the Risk State using two quantitative values: (1)
Probability and (2) Impact, and then the Risk Exposure is computed from the Probability and
Impact.

5.0 THE SOFTWARE SYSTEM

The software system which is hereafter referred to as The Project Manager TPM V1.0
(code-named by the researchers) was designed to automate the software project management
process. Its purpose is to provide a more effective way of managing software projects using online
facilities offered by the software.

5.1 Architectural Style

As a prelude, it should be understood that, client and server as used in this work refer to
software and not hardware entities. In its very fundamental form, the term client-server involves a
software entity (client) making a specific request which is fulfilled by another entity (server). Figure
3 illustrates these client-server transactions.

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A DEVELOPING IT ECONOMY 55

Client Server
(Requester) (Attempts to fulfill request)

Figure 3: Client-Server Transactions

Knowledge source
(i.e. database)

Processing
(i.e. logic & calculations)

Device
(i.e. printer, peripheral
sharing)

Services
(i.e. additional requests

)

 Request
 Result

5.2 The Three-Tier Client-Server
 The vast majority of end-user applications consist of three components: presentation,
processing, and data. The client-server architecture is defined by how these components are split
up among software entities and distributed on a network (Hunter and Crawford 2001).
 The client handles only the presentation, and makes remote calls to the middle-tier
functionality server, when calculations or data access is required. The middle-tier handles data
access on behalf of the 1st- (presentation) tier to the third-tier (database). For this work, the
middle-tier was coded in Java – a highly portable, flexible and non-proprietary language (Bayross
2001; Naughton 1999).
 The researchers intend that, project team members would use their PCs (1st-tier) to make
requests to the Java-based application server (2nd-tier), which in turn makes data access to a
relational database management system (3rd-tier). The Presentation tier is designed in JavaScript
(Wilton 2000; Flanagan 2002).
 With this architecture, the structure of the database or even its implementation can change
without affecting the 1st-tier (presentation). For instance, the database can be changed from
Microsoft Access to Oracle without making any changes to the code that handles presentation
(Siple 1998). Figure 4 shows a schematic representation of the three-tier system architecture
developed in this work.

Fe 4: Three-tier Client-server architecture

Functional Server
(The Project Manager TPM V1.0)

Functionality Server

Data
Management Presentation

Application Processing
(mostly via remote procedures)

(The Project Manager TPM VI.0)

Database
 TPMVI.0

RPC

RPC

RPC

Client (Web Browser)

Client (Web Browser)

Client (Web Browser)

Database

db Call

db Call

Figure 4: Three-tier Client –server architecture

56 I. I. ARIKPO and A. O. OSOFISAN

 In terms of the logical design for TPM V1.0, we adopted an object-oriented approach based
on UML using class diagrams. Figure 5 is a Level 1 class diagram showing a detailed logical
design of the system.

ProjectMember

sendMessage()
checkDetails()
viewMessage()

staffID

1..*

1..*

message-to

ProjectStaffProjectManager

createProject()
allocateStaff()
removeStaff()
addStaff()
projectPlan()

appoints 1..*1

TeamMemberTeamLeader

estimateProject()
identifyConfigIt()
setBaselines()

monitorConfigIt()

viewConfigItems()

RiskOfficerOtherStaff

reportRisk() circulateRisks()
calcRiskImpact()
prioritizeRisks()

Project

showStatus()

projectID
projectCost
startDate

1..*

1

ma
na

ge
s estimates

1
1

heads1

1..*

1..* has

ProjectRisks

listRisks()
showRiskStatus()

riskID
riskExposure
riskImpact

vie
w

1..*

1..*

1

1..*

ma
na

ge
d-

by

1..*

1..*

identify

1..*

1

ProjectPlan

showPrjPlan()

dEarliestStart
dEarliestFinish

computeTime()

developed-by 1

1..*

1
1

ConfigItem

showBaselines()

configurationID
versionNumber

showConfigStatus()

1

1..*

1..*

1..*

check-status-of

1..*

1..*

ch
ec

k-s
tat

us
-of

c

c

1

1..*
identified-by

Figure 5: Level 1 Class Diagram of The Project Manager V 1.0

5.3 Target Server Requirements
 TPM VI.0 is a web application which runs on a web server. For the application to run
correctly, the target server machine must satisfy the following requirements.

♦ The Web Server

The target server should have Apache Tomcat Web Server – Tomcat 3.2 and above
installed. The Servlet API reference implementation of this version is written entirely in
Java. It supports Servlet API 2.2 – the first Servlet API to support web applications. The
development web server for TPM V1.0 is Tomcat 5.2.7.

♦ Java Virtual Machine (JVM)
The target server machine should have a Java Runtime Environment that has a J2SDK or
J2r1.4.1 or above version of Java Virtual Machine in order to be able to run servlets – the
strength of web applications.

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A DEVELOPING IT ECONOMY 57

5.4 Implementation
 As we have earlier stated, the software for this work was implemented using four sample
projects. The figures and tables below show screen shots and some of the reports generated by
TPM V1.0.
 It should be noted that COCOMO II (the base model used in TPM V1.0) uses so many
factors and elements in estimation. This is the reason that its accuracy is highly acceptable by
many software practitioners (Baik 1999). As a result of these numerous estimation factors, project
managers often find it too tasking and discouraging to go through the estimation process without
forgetting (leaving out) some factors, which normally result in unacceptable delays in project
estimation and planning. TPM V1.0 solves this problem by guiding the manager through the entire
estimation and other project management processes, with minimal paperwork, and yet keeps all
information about each project on the database. Access to project information is quick and easy.
The input fields (Figures 6 and 7 below) show the range of data expected; and the corresponding
data elements are prompted in ranges using dropdown lists.
 Figures 6 and 7 shown as example of implementation are for the Early Design Stage. This
enables the project to start. More realistic information is gathered during the Post-Architecture
Stage and TPM V1.0 allows for the adjustment of the initial figures to obtain more accurate
estimation. The interfaces for Early Design and Post-Architecture stages are similar.
 TPM V1.0 is very dynamic. As inputs/outputs/enquiries and data elements change, the
total function points, project size, effort and schedule are recalculated automatically. Figures 6 and
7 show the estimation process in the right order. Some of the other aspects of software project
management, such as, planning and resource allocation, risk management, and adding new users
to the project, are also shown in Figures 8 to 10. Some of the project management hardcopies
generated from TPM V1.0 are shown on Tables 1 to 4 below.
 In summary, the most important feature of TPM V1.0 is the simplicity with which software
projects can be managed, and the accuracy of project estimation is reasonable because the
underlying model (COCOMO II) is thorough. Because of its thoroughness, most practitioners
prefer to use less-accurate, but simple models for project estimation, but with less reliability. TPM
V1.0 encourages practitioners to do proper project management by leading them through the
entire process using simple and meaningful interfaces. Less-experiences practitioners can also
estimate and manage projects with it, hence improve their project management skills with the
software.

Figure 6: Project Estimation input for Unadjusted Function Points – Early Design Stage

58 I. I. ARIKPO and A. O. OSOFISAN

Figure 7: Project Estimation input for other sections – Early Design Stage

Figure 8: Software planning process showing resource allocation to activities

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A DEVELOPING IT ECONOMY 59

Figure 9: Software risk management (Exp. means Exposure)

Figure 10: New user sign into the system

Table 1: Project Estimation output for Four (4) sample projects.

Project
ID

Project
Title

Estimation
Date

Function
Points

Project
Size

Scale
Factor

EffortAdj
Factor

Project
Effort

(in
P/M)

Project
Schedule

Team
Size Hourly

Labour
Rate

Project
Labour
Cost (N)

P001

Customs
Revenue
Collection

Fri May 13
2005 53 4.823 1.15 0.091 1.362 2.334

5

500 490,320.00

P002

Disease
Analysis
System

Fri May 13
2005 29 2.639 1.14 0.093 0.689 1.66

2

500 248,040.00

P003

Student
Reg. &
Result
System

Fri May 13
2005 76 6.916 1.15 0.165 3.737 3.866

5

500 1,345,320.00

P004

Billing
System
Suite

Fri May 13
2005 37 3.367 1.13 0.316 3.052 3.494

4

400 878,976.00

Table 2: Project Plan report generated automatically by software

Activity Latest
Start

Latest
Finish Action Type Resource 1 W_Days1 Resource 2 W_Days2 Resource 3 W_Days3

Initial customer contact 01/01/2005 02/01/2005 Starting task Arikpo 2 Brian 2 0

Conduct FAST meeting 03/01/2005 05/01/2005 task Matt 1 Brain 1 0

Review FAST results 08/01/2005 08/01/2005 task Jennifer 1 Carolyn 1 0

Develop prelim product desc. 09/01/2005 12/01/2005 task Arikpo 1 Matt 2 0

Perform feasibility econ. ana. 13/02/2005 16/02/2005 task Mike 3 0 0

Perform system eng. task 15/01/2005 01/02/2005 task Matt 6 Brain 6 Carolyn 6

Product description approved 15/01/2005 15/01/2005 milestone 0 0 0

Perform data design 25/05/2005 26/05/2005 task Matt 4 Carolyn 4 0

60 I. I. ARIKPO and A. O. OSOFISAN

Table 3: Output of Risk Management, generated automatically by software.

Risk ID Risk Title Mitigating Unit Exposure Technical Exposure Schedule Exposure Cost

R001 Incomplete requirements Analysis & Feasibility Study Low Medium Low

R002 Delay in mobilization fees Management Low Medium Low

R003 Computer equipment breakdown Technical Medium Low Low

R004 Blackout in power supply Technical Medium Medium Medium

R005 Improper documentation Documentation & Design Nil Medium Medium

R006 Lack of software tools Project manager Low Low Low

R007 System breakdown Management Medium Medium Medium

R008 Lack of logistics Management Low Low Low

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A DEVELOPING IT ECONOMY 61

Table 4: Summary of projects as requested by team members

Project ID Project Title Team Size Client Name Client Address Team Leader ExpStartDate

P001 Customs Revenue Collection 5 General Bank Plc Calabar Mr. Iwara I. Arikpo 2004-12-04

P002 Disease Analysis System 2 Unical Medical Centre Calabar Felix Ogban 2003-05-06

P003 Student Reg. & Result System 5 Centre for Gen. Studies Calabar Samuel Oyong 2004-11-09

P004 Billing System Suite 4 Nigerian Ports Authority Calabar A. O. Ayodele 2004-04-08

6.0 DISCUSSION

The software project management tool – The Project Manager TPM V1.0 – developed in
this research is largely applicable to large software organizations, for three of reasons:

i. Larger organizations are more likely to have enough “similar” projects to provide
adequate historical data for any given project.

ii. A large organization may have large database of information that can aid consistent
quantification, and minimize subjectivity.

iii. Human factors have been identified as very important to the successful management of
software projects. Larger organizations may have formalized procedures for personnel
and project evaluation which can provide quantified inputs when required.

Apart from the strengths of the underlying model (COCOMO II), and advantages of TPM
V1.0 discussed in Section 6.4, the software has advantage over some of the most popular project
management applications like Microsoft Project. Some of these are summarized in Table 5 below.

Table 5: Comparison of TPM V1.0 with Microsoft Project

S/N The Project Manager TPM V1.0 Microsoft Project

1.
The software can work on any platform because
of the underlying implementation language,
Java.

The software is strictly Windows-based.

2. It is purely software project-oriented It is generic for general project management. The
peculiarity of software is not taken care of.

3. It is network based in design and
implementation. It is stand-alone.

4.
COCOMO II (the underlying model) is very
thorough, covering all aspects of a software
management process.

Because of the generic nature, the underlying
model does not cover all aspects of software
management process.

5.

It provides such facilities as can help project-
wide communication. For instance, a team
member can place a message for a meeting on
a given project, and others can access it.

N/A

CONCLUSION
 This work developed a software tool, TPM V1.0, for automating the management of
software projects in a country like Nigeria, where the software industry is very young, in terms of
development.

SUGGESTIONS FOR FURTHER RESEARCH

This research has focused on the management of application software, and within a narrow
domain – Nigeria. The other directions, in which further research can be extended, are the
management of system and real-time software projects, respectively, in developing countries.
Both of these directions require the identification and involvement of more abstract features to
support a more broad-based project management.

62 I. I. ARIKPO and A. O. OSOFISAN

In the area of estimation, an accurate measure of project size is not available early in the
development life cycle. So it would be more pragmatic if further research could be shifted from
early cost estimation to the estimation of a productivity coefficient that describes the effect that
certain cost drivers and environmental factors – such as power supply, resource availability, etc. –
have on productivity.

REFERENCES

ASC Corporation., 2003. Risk Management Process and Implementation – Practice Book Number
 One: Overview and Guidance. American Systems Corporation, 13990 Parkeast Circle
 Chantilly, USA.

Baik, J., 1999. USC COCOMO II 1998.0 Model Definition Manual. University of Southern
 California Center for Software Engineering, California.

Bayross, I., 2001. Web Enabled Commercial Applications Development Using... Java 2. Tech
 Publications PTE Ltd., Singapore.

Boehm, B. W., 1995. Constructive Cost Model II. University of Southern California Center for
 Software Engineering, California.

Feigenbaum, E.A., and McCorduck, P., 1983. The Fifth Generation. Addison-Wesley Longman,
 Inc. USA.

Flanagan, D., 2002. Java Script – The definitive Guide. 4th Ed. O’Reilly and Associates, Inc., USA.

Gibbs, W. W., 1994. Staff Writer. Scientific American, USA.

Hunter, J. and Crawford, W., 2001. Java Servlet Programming. 2nd Ed. O’Reilly & Associates
 Inc., USA.

Jalote, P., 2000. It’s quality that has done the trick – Developing Nations in Asia & Latin America
 Want to Replicate India’s story. Computer Science & Engineering 11T Kanpur, India.

Jones, C., 2002. Software Cost Estimation in 2002. Software Productivity Research Inc. Artemis
 Management System, USA.

McConnell, S., 1996. Rapid Development - Taming Wild Software Schedules. Microsoft Press
 Redmond, WA, USA.

Moder, J. J., Phillips, C. R. and Davis, E. W., 1983. Project management with CPM, PERT and
 PRECEDENCE Diagramming. 3rd Ed. Van Nos Reinhold, Atlanta, GA.

Naisbitt, J., 1982. Megatrends. Warner Books, New York.

Naughton, P. and Schildt, H., 1999. 3rd Ed. Java 2–The Complete Reference.
 Osborne/McGraw-Hill, California.

Page-Jones, M., 1985. Practical Project Management. Dorset House. USA.

Pressman, R. S., 1992. Software Engineering: A Practitioners Approach. 3rd Ed. McGraw-Hill, Inc.,
USA.

AUTOMATING THE MANAGEMENT OF SOFTWARE PROJECTS IN A DEVELOPING IT ECONOMY 63

Radhakrishnan, N., 2004. Building Successful Software Companies in Developing Countries: The
 Case of India and Infosys. Infosys Technologies Limited, India.

Royce, W., 1998. Software Project Management: A Unified Framework Addison Wesley, USA.

Schach, S. R., 1996. Classical And Object-Oriented Software Engineering. 3rd Ed.
 Irwin/McGraw-Hill, USA.

Siple, M. D., 1998. The Complete Guide to Java Database Programming – JDBC, ODBC & SQL.
 The McGraw-Hill Companies Inc., USA.

Tessler, S. and Barr, A., 1997. Software R&D Strategies of Developing Countries. Stanford
 Computer Industry Project, UK.

Tomayko, J. E., 1989. Software Project Management, SEI Curriculum Module SET –CM -21 – 1.0.
 Carnegie Mellon University, USA.

Wilton, P., 2000. Beginning JavaScript. Wrox Press Ltd., Birmingham, UK.

Wu, L., 1996. The Comparison of the Software Cost Estimating Methods. University of Calgary,
 Canada.

