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ABSTRACT 

 
 In this paper, the convergence analysis of the conventional conjugate Gradient method was 
reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed 
with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of 
the condition number of M-1A. Again, this work broadens our understanding that the modified CGM 
yields the exacts result after n-iterations, and further proves that the CGM algorithm is quicker if 
there are duplicated eigenvalues. Given infinite floating point precision, the number of iterations 
required to compute an exact solution is at most the number of distinct eigenvalues. It was 
discovered that the modified CGM algorithm converges more quickly when eigenvalues are 
clustered together than when they are irregularly distributed between a given interval. The 
effectiveness of a preconditioner is determined by the condition number of the matrix and 
occasionally by its clustering of eigenvalues. For large scale application, CGM should always be 
used with a pre-conditioner to improve convergence. 
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INTRODUCTION  
 

 Optimization theory is aimed at solving problem under investigation with a high degree of 
precision and under a highly restrictive operation time so as to minimize computing cost. It is 
necessary to choose a computational scheme that can meet these requirements (Otunta and 
Ibiejugba, 1991). The desire to construct a suitable and implementable algorithm has motivated 
the research investigation contained in this work. In this paper we seek to improve the 
convergence rate of the Modified Conjugate Gradient Method by preconditioning the algorithm. 
 
The Conventional Conjugate Gradient method (CGM)  
 The conventional conjugate method (CGM) was originally developed by Hestenes and 
Stiefel (1952) as a method of solution for linear systems. Fletcher and Reeves (1964) built the 
necessary underlying theory for a successful application of the method to quadratic functional and 
developed its convergence properties. 

To this end we defined quadratic functional as: 
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Where A is an n x n symmetric positive definite operator on the Hilbert space H, and a is vector in 

H. The steps in CGM algorithm are describe as follows (see Omolehin et al, 2006). 
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EZEUGWU  
Algorithm 1 

Step 1: The first element HX ∈0  of the sequence is guessed, while the remaining members of the 

sequence are computed with the aid of step 2 to 4.  

Step 2: )( 000 AxagP +−=−=         (2) 

where 0P is the descent direction, go is the gradient of 0)( xxandxf =  
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α is the step length.          
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Step 4: If 0=ig , for some ί, terminate the sequence, else set ί = ί+1 

 
We state the following theorem because it will give an understanding to the analysis of the 
convergence rate of the conventional conjugate gradient method (see Omolehin et al, 2006). 
 
Theorem 1 (statement only): The convergence rate of GM algorithm for quadratic functional 
remains stable if D = m/M where m and M are the smallest and largest eigen values of the control 
operator A respectively. (See proof in Omolehin et al, 2006)  
 
Convergence Rate of Conventional CGM Algorithm 
 
To fully understand this work it will be necessary to show the convergence rate of the conventional 
CGM Algorithm (See Omolehin et al, 2006). Recall the quadratic functional 

HH Axxxafxf ><+><+= ,
2

1
,)( 0   

where f0 is  constant, H is a Hilbert space, x is a n x n dimensional vector in H, a positive definite 
constant matrix operator. 
 
Theorem 2: The law of convergence of the CGM algorithm is given as 
  

)(
/1

/1
)( 0

2

xE
Mm

Mm
xE

n

n







+
−

=  

 
This establishes the convergence rate of the conventional CGM algorithm. (see proof in Omolehin 
et al, 2006). 
 
The Modified Conjugate Gradient Method 
 
In our previous work, Omorogbe and Osagiede (2008a) on the general convergence of the 
steepest descent method, the number of matrix-vector products per iteration can be reduced to 
one by using a recurrence to find the residual: 
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11 ++ −= ii Aer  

 )( iii deA α+−=  

iii Adr α−=     (7) 

 
Here, the conjugate gradient is simply the method of conjugate direction where the search 
direction are constructed by conjugation of the residuals (i.e by setting µί =rί). The residual worked 
for steepest descent in our previous work Omorogbe and Osagiede (2008a), and it will even 
worked better for the conjugate gradient method. It has the property that it’s orthogonal to the 
search direction  
 
 i.e dίrj = 0, ί<j (by A- orthogonal of d-vectors)       (8) 
 
So, it’s guaranteed always to produce a new, linearly independent search direction unless the 
residual is zero, in which case the problem is feasible. 
As we shall see, there is an even better reason to choose, the residual. 
 Let us consider the implication of this choice, because the search vectors are built from the 
residuals and the subspace span {r0, rί,�ri-1}  is equal to Di. As each residual is orthogonal to the 
previous search directions, it is also orthogonal to the previous residuals 
 

jirr j

T

i ≠= ,0     (9) 

 
Interestingly, Eq(7) shows that each new residual rί is just a linear combination of the previous 

residual and Adί-1, recalling that ii Dd ∈−1 , this fact implies that each new subspace Dί+1 is formed 

from the union of the previous subspace Dί and the subspace Adί. Hence, 
 
Dί = span {d0, Ad0, A

2d0,�., Aί-1 d0}  
    = span {r0, Ar0, A

2 r0,�.., Aί-1 r0}  
 
According to Shewchuk (1994), this supspace is called krylov subspace created by repeatedly 
applying a matrix to a vector. It has a fascinating property; because Adί is included in Dί+1, the fact 
that the preceding residual rί+1 is orthogonal to Dί+1 by using Gram-Schmidt conjugation rί+1 is 
already A-orthogonal to all previous directions except dί. The process of generating the set of A-
orthogonal search directions {dί} is called conjugate Gram-Schmidt process (Gilbert and Nocedal, 
1992). In the context of this paper, It follows that the Gram-Schmidt constant are: 
 
βίj = - rί

T Adj/dj Adj 
 
Simplifying this expression and taking inner product of rί and eq (7) 
 
rί

Trj+1 = rί
Trj – αjrί

TAdj 
 
αjrί

TAdj = rί
Trί – rj

Trj+1 

 

       rί
Trί   ί= j 

            αί     by equation  (9) 
 
          -rί

Trί  ί≠ j         
            αί-1  
 
  0        otherwise 
 

rί
T
Adj  = 
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∴ βίj =   1        rί
Tr ί  ί ) j + 1 (using Gram Schmidt conjugation) 

   αί-1  dί
T

-1 Adί-1  
     
       0   otherwise  
 
 

Clearly, most of the βίj term have disappeared. It is no longer necessary to store old search 
vectors to ensure the A-orthogonality of new search vectors. This major advance is what makes 
the modified conjugate gradient as important an algorithm as it is because both the iteration are 
reduced from 0(n2) to 0(m), where mn is the number of zero entries of A (Gilbert and Nocedal, 
1992). Henceforth, we shall use the abbreviation 

βί = βί, ί-1 simplifying further. 
 
βί =     rί

Trί 
        dTί-1 rί-1 
 
 =       rί

Trί 
       rTί-1rί-1 

 
Putting everything together, the modified conjugate gradient algorithm is given below 
 
Algorithm 2 
 
1. Start with x=x0, otherwise set x0=0 
 
2. d0 = r0 = b –Ax0 
 
where. αί =     rί

Trί 
          dTί Adί 
 
3. xί+1 = xί + αί dί 
 
4. rί+1 = rί – αί Adί 
  
 where   βί+1 =  rί+1

Trί+1 (*) 
                            rίTrί 
 
 
5. dί+1 = rί+1 + βί+1dί 
 
6. When the algorithm reaches the minimum point, the residual becomes zero, and if (*) is 
evaluated on iteration later, a division by zero will result. Then, STOP. 
 
 The above algorithm of the modified CGM is clearly an improvement on the modified 
steepest descent method as well as algorithm 1 of the conventional conjugate method. 
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The performance of the modified conjugate gradient method is demonstrated in Fig 1. 
 
                                                           

 
 
 
                                
  
                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: The modified conjugate gradient method. 
 
Convergence  Analysis of The Modified Conjugate Method. 
 Normally CGM is complete after n-Iterations. However in practice, accumulated floating 
point roundoff error courses the residual to gradually lose accuracy, and cancellation error causes 
the search vectors to lose A- orthogonality. This convergence analysis is important because the 
modified CGM algorithm is used for large class of problems that is not feasible to run even in n-
iterations. The analysis is done using picking perfect polynomials (Omorogbe and Osagiede, 
2008b). 

Pick perfect polynomials 

 We have seen that, each step of the modified CGM algorithm, the value eί is chosen from 
e0 + Dί, where  
 
Dί = Span   {r0, Ar0, A

2r0,��. Aί – 1r0}   
 
= Span   {Ae(0), A

2e(0), A
3e0,��., Aίe0}    

 
Using Krylov subspaces, for a fixed ί, the error term  has the form  
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The coefficient Dj are related to the value Dί and Dί, but the precise relationship is that CGM 
algorithm closes the Dj coefficients that minimize ǁeίǁA. 

x2 

x1 2 -2 -4 4 

4 

2 

-2 

-4 

-6 

x0 
x  



   100                                                                                               D. E. A. OMOROGBE AND A. A. OSAGIEDE 

 The expression in parentheses above can be expressed as a polynomial. Let Pί()) be a 
polynomial of degree ί, Pί can take either a scalar or a matrix as its argument, and will evaluate to 
the same; i.e 
 
If P2 ()) = 2)2  + 1, then P2 (A) = 2A2+1. This feasible notation comes in handy such that  
 
 Ρί (A)v – Ρί())v = 0 
Then, we can express the error term as  
 eί = Ρί (A)e0 

If we require that Ρί(0) = 1 the modified CGM chooses this polynomials when it chooses the 
Dj  coefficients. Let’s examine the effect of applying this polynomial to e0 

As in the analysis of the steepest descent in our earlier work Omorogbe and Osagiede 
(2008b), this expresses e0 as a linear combination of orthogonal unit eigen vectors   

∑
=

=
n

j

jj Ve
1

0 ξ  

 
and we find that  
 
 eί =  ) ξjPί ()j)Vj 
 
 Aeί =  )ξjPί ()j) )jVj   Implies  
 
 ǁeίǁ2

A - ) ξj)j
2 (Pί()j))

2)j 
 
The performance of the modified CGM is illustrated in Figure 2 (a-c) 
 
(a) P0(λ)     (b) P1(λ) 
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(c)  P2 (D) 
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Figure 2: The performance of the modified CGM algorithm 
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 From Figure 2 above, the convergence of the modified CGM after i-iterations depends on 
how close a polynomial Pί of degree ί can be to zero on each eigenvalue, given the constraint that  
Pί(0) = 1. The CGM algorithm finds the polynomial that minimizes this expression, but 
convergence is only as good as the convergence of the least eigenvectors. 
Letting E(A) be the set of eigenvalues of A. we have 
 
 || eί ||

2A ) Min max Pί ()) 2 ) ξj
2)j 

  Pί,)є E(A) 
 

= Min max   Pί())   2 ||eo ||A
2 (10) 

     Pί))E (A) 
 
 Fig2 illustrated, for several values of i, the pί that minimizes this expression from our 
illustration with eigen values 2 and 7. There is only one polynomial of degree zero that satisfied P0 
(0) =1, and that is P0(D) =1, graphed into Fig2 (a). The optimal polynomial of degree one is 
P1(D)=1-2x/9 as graphed in Fig 2 (b). Note that P1(2) = 5/9 and P1(7) = - 5/9, and so the energy 
norm of the error term after one iteration of the CGM is no greater than 5/9 it initial value. Figure 2 
(c) shows that, after two iterations, Equations (*) evaluates to zero. This is because the polynomial 
of degree two can be fit to the three points P2(0) =1, P2(2) = 0 and P2(7) = 0. In general, a 
polynomial of degree n can fit n+ 1 point, and thereby accommodate n separate eigen values. 
 The foregoing discussion reinforces our understanding that the modified CGM yields the 
exact result after n iterations; and further proves that the modified CGM is quicker if there are 
duplicated eigen values, given infinite floating-point precision, the number of iterations required to 
compute an exact solution is at most the number of distinct eigenvalues. We also find that 
modified CGM converges more quickly when eigenvalues are clustered together than when they 
are irregularly distributed between Dmin and Dmax, because it is easier for the algorithm to choose a 
polynomial that makes equation (10) small. 
 
Chebyshev Polynomials. 
 A useful approach is to minimize equation (10) over the range [)min, )max] rather than at a 
finite number of points. The polynomials that accomplish this are based on Chebyshev 
polynomials (Gilbert and Nocedal, 1992). 
 The Chebyshev polynomial of degree i is Ti()) =1/2 [() + √)2 –1)i +() - √)2-1)i] The 
Chebyshev polynomials have the property that |Ti())| ≤ 1 on the domain ) ) [-1,1] and further that 
Ti()) is maximum on the domain ) ) [-1,1] among all such polynomials  (Gilbert and Nocedal, 
1992). Equation (10) is minimized by choosing 
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This polynomial has the oscillating properties of Chebyshev polynomials with the domain )min ≤ ) 
≤ )max. The denominator enforces our requirement that Pί (0) = 1. The numerator has a maximum 
value on the interval between Dmin and Dmax so, from equation (10) we have, 
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The second addend inside the square brackets converges to zero as ί increases, so it is common 
to express the convergence of CGM with the weaker inequality 
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The first step of the modified CGM is identical to a step on the steepest descent method. Setting ί 
= 1 in equation (11), we obtain the convergence result for the steepest descent method of our 
earlier work (Omorogbe and Osagiede, 2008b): 
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 This is just the polynomial case illustrated in Figure 2(b). However in practice CGM usually 
converges faster than equation (12) would suggest, because of good eigenvalue distribution or 
good starting points. Comparing equation (12) of the modified CGM and equation (13) of the 
modified steepest descent method, it is clear that the convergence of the modified CGM is much 
quicker than that of modified steepest descent method as well as the conventional CGM algorithm. 
But it is not necessarily true that every iteration of CGM enjoys faster convergence, for example, 
the first equation of CGM is an iteration of steepest descent the factor 2 in equation (12) allows 
CGM a little slow for these poor iterations. 
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Fig. 3: Illustration of convergence of the modified CGM as a function of condition number. 
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Preconditioning the Modified Conjugate Gradient Method 
Preconditioning is a technique for improving the condition number of a matrix. (Gilbert and 
Nocedal, 1992), Suppose that M is a symmetric matrix that approximates A. but is easier to invert.  

We can solve  

 AX = b 
 indirectly by solving  
   M-1 AX = M-1b                  (14) 

           
If k(M-1A) ) k(A), or if the eigenvalues of M-1A are better clustered than those of A, we can 
iteratively solve equation (14) more quickly that the original problem. M-1A is not generally 
symmetric nor definite, even if M and A are. 
 
We can prevent this difficulty, because for every symmetric, positive – definite M there is matrix E 
that has the property that EET = M, (the matrix E can be obtained by Cholesky factorization). The 
matrices M-1 A and E-1 AE-T have the same eigenvalues. This is true because if V is an 
eigenvector of M-1A with eigenvalue D, then ETV is an eigenvector of E-1 AE-T  with eigenvalue D: 
(E-1AE-T) (ETV) – (ETE-T) E -1 AV – ETM-1AV - )ETV . 
 
The system Ax = b can be transformed into the problem E-1AE-T X = E-1b. Then X – E TX,   
is solved first for x0, then for xi. Since E-1AET is symmetric and positive –definite, x can be found 
by steepest descent method or conjugate Gradient method (CGM). The system is called the 
transformed preconditioned conjugate Gradient method (Sluis and Vorst, 1986): 
  
 d0  =  r0 =  E-1-b – E-1AE-1- xo 
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 di + 1 = ri + I  + ) I + 1 dί 
 
This method has the undesirable characteristics that E must be computed. However, a few careful 
variable substitution can eliminate E. Set ri = E-1 ri = ETdί, and use the identities 

Xi  = ET xί and E-T E-1 = M-1. 
We derive the untransformed preconditioned conjugate Gradient method: 

 
r0 – b - Ax0, 

 

d0 = M-1 ro,  
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 The matrix E does not appear in these equations; only M-1 is needed. By the same means, 
it is possible to derive a preconditioned steepest Descent method that does not use E. 

The effectiveness of a preconditioned M is determined by the condition number of M-1 A, 
and occasionally by its clustering of eigenvalues. The problem remains of finding a pre conditioner 
that approximate A well enough to improve convergence enough to make up for the cost of 
computing the product M-1rί once per iteration. It is not necessary to explicitly compute M or M-1; it 
is only necessary to be able to compute the effect of applying M-1 to a vector. Within this constraint 
there is surprisingly rich supply of possibilities. 

Intuitively, pre-conditioning is an attempt to stretch the quadratic form to make it appear 
more spherical, so that the eigenvalues are close to each other. A perfect pre conditioner is   M = 
A; for this pre conditioner, M-1A has a condition number of one, and the quadratic form is perfectly 
spherical, so solution takes only one iteration. Unfortunately, the preconditioning step is solving 
the system MX = b, but this is not a very expedient pre conditioner. 

The simplest pre conditioner is a diagonal matrix whose diagonal entries are identical to 
those of A . the process of applying this pre conditioner is refers to as diagonal preconditioning or 
Jacobi preconditioning (Gilbert and Nocedal, 1992). This is equivalent to scaling the quadratic 
form along the coordinate axes. By comparison the perfect pre conditioner M = A scales the 
quadratic form along its eigenvector axes. A diagonal matrix is trivial to invert, when it is clear that 
the condition number has improved. This improvement is much more beneficial for systems where 
n D 2. 

A more elaborate pre conditioner is incomplete Cholesky preconditioning (Gilbert and 
Nocedal, 1992). Cholesky factorization is a technique for factorizing a matrix A into the form LLT, 
where L is a triangular matrix. Incomplete Cholesky factorization is a variant in which little or no fill 
is allowed; A is approximated by the product LLT, where L might be restricted to have the same 
pattern of nonzero elements as A; other element of L are thrown away. To use LLT as a pre 
conditioner, the solution to L L D = z is computed by back substitution ( the inverse of LLT is never 
explicitly computed). Unfortunately, incomplete Cholesky preconditioning is not always stable 
(Gilbert and Nocedal, 1992). 

7. The Modified Conjugate Gradients on the Normal Equations 

 The modified CGM can be used to solve system where A is not symmetric, not positive – 
definite, and even not square. A solution to the least squares problem  
 
Min    AX - b   2                      (15) 
 
  can be found by setting the derivative of  the expression (15) to zero: 
 
AT Ax = AT b.                     (16) 
If A is square and nonsingular, the solution to equation (16) is the solution to Ax = b. If A  is not 
square, and Ax = b is over constrained, that is, has more linear independent equations than 
variables, then there may or may not be solution to Ax = b, but it is always possible to find a value 
of x that minimizes expression (15), the sum of squares of the error of each linear equation 
(Omorogbe and Osagiede, 2008b). 
 ATA is symmetric and positive (for any x, x TAT Ax =|| Ax  = ||2 ≥0). If Ax = b is a constrained, 
then ATA is nonsingular, and methods like Steepest Descent and CGM can be used to solve 
equation (16). The only problem in doing so is that the condition number of ATA is the square of 
that of A. So convergence is significantly slower (Omorogbe and Osagiede, 2008b). 
 
 

x 
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 An important technical point is that the matrix ATA is never formed explicitly, be cause it is 
less sparse than A. Instead ATA is multiplied by d, first we find the product Ad, and then ATAd. 
Also, numerical stability is improved if the value d TAT Ad in (2) of Algorithm 2 is computed by 
taking the inner product of Ad with itself.  
 
CONCLUSION 
 
 The effectiveness of a pre conditioner M is determined by the condition number of M-1 A, 
and occasionally by its clustering of eigenvalues (Omorogbe and Osagiede, 2008b). The problem 
remains of finding a pre conditioner that approximates A well enough to improve convergence of 
the CGM to make up for the cost of computing the product M-1ri once per iteration (Omorogbe and 
Osagiede, 2008b). It is necessary to explicitly compute M or M-1; it is only necessary to be able to 
compute the effect of applying M-1 to a vector (Omorogbe and Osagiede, 2008a). Within this 
constraint, there is a surprisingly rich supply of possibilities as earlier discussed (Omorogbe and 
Osagiede, 2008b). However, it is concluded that for large – scale application, CGM should always 
be used with a pre conditioner to improve convergence. 
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