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ABSTRACT 
 

 The adequacy of an experimental design can be determined from the information matrix. 

The D-optimality criterion is based on the determinant of the information matrix M(ξ) (ξ is any 

design measure) of a design, that is it maximizes the determinant of the information matrix M(ξ) or, 

equivalently, minimizes the determinant of inverse of the information matrix 1( )M ξ− .There are 

cases where the information matrix M(ξ) of a design degenerates (that is, the determinant is zero). 

In this situation, we introduce the use of the loss of information matrix designated as L(ξ) matrix. 

The loss of information matrix L(ξ) is a symmetric positive definite matrix that has exactly the same 

diagonal elements as those of the information matrix M(ξ) and the off-diagonal elements lying 
between zero and one.  DL-optimality criterion measures the determinant of the loss of information 
matrix.In this paper, we consider the correspondence between the D-and DL-optimality criteria, 
that is whether a D-optimal design is also DL-optimal, in a block or more than one block using a 
regular and irregular experimental region. An optimal design is selected with the aid of the 
combinatorial algorithm developed by Onukogu and Iwundu (2008). Breaking of ties existing in D-
optimality criterion using the DL-optimality criterion is also considered.  
 
KEYWORDS: Loss of information; DL-optimality criterion; Incomplete block design; Regular and 
   irregular experimental region. 
 
 INTRODUCTION 
 
 An optimality criterion is a single-valued measure that determines how good a design is, 
and it is maximized or minimized by an optimal design. The information-based criteria that are 
normally used are the D-, A-, E- and G-optimality, which are all related to the information matrix 

M(ξ) of the design. This M(ξ)-matrix is important because it is proportional to the inverse of the 
variance-covariance matrix for the least-squares estimates of the parameters of the model.  
Roughly, a good design should “minimize” the variance of the inverse of the information matrix, 
which is the same as maximizing the information matrix. Indeed, the D-optimality criterion is based 
on the determinant of the information matrix of the design, which is the same as the reciprocal of 
the determinant of the variance-covariance matrix for the least-squares estimates of the 
parameters of the model. In order words, the D-optimality criterion maximizes the determinant of 

the information matrix M ( )ξ  or, equivalently, minimizes the determinant of the inverse of the 

information matrix M-1 ( )ξ . 

 Now in a situation where the information matrix is degenerate, that is, the determinant of 
the information matrix is zero; we introduce the use of the loss of information matrix designated as 

L ( )ξ - matrix. The loss of information matrix is a (p x p) non-singular, positive definite matrix, 

whose diagonal elements are exactly the same as the diagonal elements of the information matrix 
and the off-diagonal elements lie between zero and one. The DL-optimality criterion maximizes the 

determinant of the loss of information matrix L ( )ξ .  
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Relative loss of information in a design is defined as a measure on relative efficiency of a design. 
Kshirsagar (1957), shows that if in any design where every treatment is replicated the same 
number of times, the total relative loss of information is one less than the average number of 

blocks per replication, that is, 






 −1
r

b
, and the total relative information on any treatment estimate 

is ( )bv
r

−  where v  is the number of treatments, b is the number of blocks and r is the number of 

replicates. Damaraju (1971) gives the relative loss of information on the treatment estimate of a 

design as 






 −
r

r iθ
 where r is the number of replications in the design and iθ  is the trace of the 

information matrix, also called C-matrix. Onukogu (1997) defines loss of information on 
confounded effect as the number of degree-of-freedom of the interactions confounded divided by 
the number of degree-of-freedom of such interactions available; where the number of degree of 
freedom confounded is equal to the number of blocks degree-of-freedom.  
 
FUNDAMENTAL CONCEPTS 
 
Information Matrix 
Given a regression function Y(x) = f(x, x2 �, xn) + e, to obtain an N-point design, the design 

matrix, X, and the information matrix, M(ξ), are given, respectively as 
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and p is the number of parameters in the function. 

 The normalized information matrix of a fixed-sized design,ξ , for x1, x2 C xn ,  is a (p×p) 
symmetric, positive-semi definite matrix, whose diagonal elements are the quotients of the sums of 
squares of the distances of the support points from the centre of the design with reference to a 
particular variate (parameter) and the number of support points N and the off-diagonal elements 
are the quotients of the sums of cross-products (i.e. distances of one support point from another 
with reference to any two variates (parameters)) and the number of support points N. 

i.e.  
1 2 1

1 1

  N  ;      
� �
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m x i i m � x x i j− −

= =

= ∀ = = ∀ ≠∑ ∑  

If the information matrix, M(ξ), of an experiment is not degenerate,  then the  
inverse of the determinant of the information matrix gives us the generalized variance of the 

design under consideration.  For any design measure, ξ, the non-singular (p×p) information matrix, 

M(ξ), is: 

i) Symmetric, positive-semi definite; that is, for any vector (say) u ≠ 0 with real components, the 

quadratic form u′ M(ξ) u ≥ 0; 

ii) Convex, that is, each element of the information matrix M(ξ) can be expressed as a convex 

combination, 
'

1
where  ,  0,  1

�

i i i
i

ix x x X i iλ λ λ∑ ∑
=

∈ > =%
; 

iii) Continuous; that is, the entries that make up the information matrix, M(ξ), are quadratic 
functions of quantitative variable which are continuous. 



iv) Differentiable; that is, 
( ) ( )

. 0
kj
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xM M
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∂ ∂ ∂
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These are known as the analytical properties of the information matrix, M(ξ), and the proof are 
shown in details in optimum experimental design literature such as Fedorov (1972), Silvey (1980)  
Pazman (1986), and Onukogu (1997) etc. 
 
2.2. Loss of information matrix 

       The loss of information matrix, L(ξ), of a fixed-size design, ξ, for  x1, x2 �, xN is a (pxp) 
symmetric, positive definite matrix whose diagonal elements are exactly the same as the diagonal 
elements of the information matrix and the off-diagonal elements lie between zero and one; that is; 

if the information matrix M(ξ) = (mij) for i, j = 1, 2, C, p then the corresponding loss of information 

matrix L(ξ) = (lij), where lij = mii for all i = j and 0 ≤ lij ≤ 1 for all i ≠ j. 
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  ;   where;
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For any design 

measure, ξ, the non-singular (p×p) loss of information matrix, L(ξ), is: 

i)  Symmetric, positive definite; that is; for any vector (say) u ≠ 0 with real components, the 

quadratic form u′ L(ξ) u > 0; 

ii) Convex; that is, each element of L(ξ) can be expressed as a convex combination 
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iii) Continuous; that is, the entries that make up L(ξ) are quadratic functions of quantitative variable 
which are continuous; 

iv) Differentiable; that is, 
( ) ( )

. 0
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ij kj ij

xL L
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∂ ∂ ∂ . 

These are known as the analytical properties of the loss of information matrix, L(ξ), and the proofs 
are shown in detail in Oladugba (2006). 
 
2.3. Regular and Irregular Experimental Region 
 
An experimental region is said to be regular if it takes the shape of any regular geometry like 
circle, rectangle, square, cube, cuboid, cone cylinder, etc; while any experimental region whose 
shape does not align with any regular geometry is known as an irregular experimental region. An 
example is a square with one of the quadrants cut-off.  
 
3. Derivation of the loss of information of a design 
 
There are many ways of deriving the loss of information of a design; but in this work, we used the 
means of the design matrix, X, formed with regard to the response function, f(x), given, the entries 
of each treatment contrast will be added up and squared multiply by the inverse of sum of each of 
the treatment contrast squared divided by the size of the block or the size of the support point in 
the design (N) considered, that is,  
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Thus, considering the general block design, the derivation of the loss of information is obtained as 
follows: Given the general block model:   

                      f(x) = Xtα  + XBβ ;  

where Xtα is an (N x p) design matrix for the treatment parameters, XBβ = (xiB) is an (N x B) block 
indicator matrix such that  



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elsewhere,0

block k in the appearspoint support  i  theif,1 thth

iBx

 
α and β are respectively p and b component vectors of the treatment and block effects,  then; the 
loss of information (L.I) of the design when the block is greater than one is, 
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Assuming that there is no blocking or the block is one, then the loss of information (L.I) will be zero 
when the loss along the column of each factor is zero and if the loss is not equal to zero then the 

loss of information, (L.I), is 
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4. Numerical Illustration  

 In this section, we consider whether a design that is D-optimal is also DL-optimal: in a block 
or more than one block using a regular and irregular experimental region. 
The optimal design here is selected with the aid of the combinatorial algorithm developed by 
Onukogu and Iwundu  (2008). This is an iterative search technique which requires the 
identification of the best D-optimal design within a class and moves progressively from one class 
in a stage to another with a higher determinant value. In this technique, all the distinct support 
points that make up the experimental region are grouped into H concentric balls according to their 
distances from the centre of the region. The movement continues in the direction of higher 
determinant value until the D-optimal design is obtained. 
 
4.1. Case One: (Regular Geometric Experimental Region) 
 Here, we consider a four-, five- and six-point designs for a bivariate linear response 
surface: 
 f(x1,x2) = a00 + a10x1 + a20x2 + a12x1x2 + e 
defined in a regular experimental area shown below  
 
 
 
 
 
  
 
 
 
 
 
 

i.e. X
~

= {x1, x2; x1 = -1, 0, 1, and x2 = -2,-1, 1, 2}. 
Grouping the support points according to their distances from the centre, we have 
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Without Blocking 

Design 
point (N) 

Step 
i 

Class 
j 

Class 
size 

(k) 

g1 

4 
g2 
2 

g3 

4 
g4 

2 

det M(ξN) 
Maximum 
determinant in the jth 
class dij 

det L(ξN) 
Maximum determinant 
in the jth class cij 

1 1 4 0 0 0 16.0** 16.0** 

2 1 0 4 0 0 0.0 0.0 

3 1 0 0 4 0 1.0 1.0 
1 

4 1 0 0 0 4 0.0 0.0 

        

1 8 3 1 0 0 4.0 8.9902 

2 16 3 0 1 0 9.0* 10.5618* 

4 

2 

3 8 3 0 0 1 2.25 7.3042 

1 4 5 0 0 0 13.1072** 15.9979** 

2 2 0 5 0 0 0.0 0.0 

3 4 0 0 5 0 0.1892 0.9996 
1 

4 2 0 0 0 5 0.0 0.0 

        

1 2 4 1 0 0 9.8304 10.2398 

2 4 4 0 1 0 10.6494* 11.5592* 

5 

2 

3 2 4 0 0 1 8.6016 8.7040 

 

1 6 6 0 0 0 12.6420** 15.9973** 

2 1 0 6 0 0 0.0 0.0 

3 6 0 0 6 0 0.7901 0.9973 
1 

4 1 0 0 0 6 0.0 0.0 

        

1 8 5 1 0 0 9.4815 11.1103 

2 12 5 0 1 0 10.2716* 12.2498* 

6 

2 

3 8 5 0 0 1 8.2469 9.7216 

Notice: (*) indicates an optimal design in a step and also (**) indicates the local D-optimum for the 
N-point design under consideration 
 
 
With Blocking 

Given the response function: f(x1, x2) = a00 + a10x1 + a20x2 + a12x2 +∑
=
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j
jb
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; such that  
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0
1

=∑
=

b

j
jβ , where the block sizes are chosen arbitrarily. 

Design point (N) Step i Class j 
Block 

β1 

Size 

β2  

g1 

4 
g2 
2 

g3 

4 
g4 

2 
det M(ξ5) det L(ξ5) 

1 3 2 5 0 0 0 5.2429** 15.9750** 

2 3 2 0 5 0 0 0.0 0.0 

3 3 2 0 0 5 0 0.3277 0.9943 
1 

4 3 2 0 0 0 5 0.0 0.0 

         

1 3 2 4 1 0 0 1.3107 10.1571 

2 3 2 4 0 1 0 2.9491* 11.5125* 

5 

2 

3 3 2 4 0 0 1 1.3107 8.6335 

 
Case Two (Irregular Geometric Experimental Region) 
 We consider a five-point design for a bivariate linear response function defined in an 
irregular area shown below. 
 
 
 
 
 
 
 
 
 
 
 
using a grid of 21 points, we form the following groups: 
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Without Blocking 

Design 
point (N) 

Step 
I 

Class 
j 

Class 
size (k) 

g1 

3 
g2 

6 
g3 

4 
g4 

3 
g5 

4 
g6 

1 
det M(ξN) det L(ξN) 

1 3 4 0 0 0 0 0 7.4024x10-17 0.9844** 

2 15 0 4 0 0 0 0 8.8x10-3* 0.0888 

3 1 0 0 4 0 0 0 Singular (0.0) Singular (0.0) 

4 3 0 0 0 4 0 0 2.8916x10-19 0.0024 

5 1 0 0 0 0 4 0 Singular (0.0) Singular (0.0) 

1 

6 1 0 0 0 0 0 4 Singular (0.0) Singular (0.0) 

          

1 6 3 1 0 0 0 0 6.25x10-2 0.6554* 

2 4 3 0 1 0 0 0 2.5x10-1** 0.5608 

3 3 3 0 0 1 0 0 3.52x10-2 0.5021 

4 4 3 0 0 0 1 0 1.406x10-1 0.4555 

2 

5 1 3 0 0 0 0 1 6.25x10-2 0.4020 

1 18 2 0 2 0 0 0 6.25x10-2* 0.2346 

2 22 2 1 1 0 0 0 6.25x10-2* 0.3077* 

3 36 2 0 1 1 0 0 8.8x10-3 0.2133 

4 48 2 0 1 0 1 0 3.52x10-2 0.1967 

4 
 

3 

5 12 2 0 1 0 0 1 1.56x10-2 0.1740 

1 24 4 1 0 0 0 0 5.12x10-2 0.7157** 

2 16 4 0 1 0 0 0 2.048x10-1** 0.6358 

3 12 4 0 0 1 0 0 2.88x10-2 0.5819 

4 16 4 0 0 0 1 0 1.152x10-1 0.5400 

1 

5   4 4 0 0 0 0 1 5.12x10-2 0.5074 

          

1 24 3 0 2 0 0 0 1.536x10-1 0.3594 

2 96 3 1 1 0 0 0 1.920x10-1* 0.4403* 

3 48 3 0 1 1 0 0 1.352x10-1 0.1352 

4 64 3 0 1 0 1 0 1.632x10-1 0.3055 

5 

2 

5 16 3 0 1 0 0 1 1.408x10-1 0.2875 

 
 

With Blocking 

Design point 
(N) 

Step 
i 

Class  
j 

Block 
B1 

Size 
B2 

g1 

3 
g2 
6 

g3 
4 

g4 
3 

g5 

4 
g6 

1 
det M(ξ5) det L(ξ5) 

1 3 2 4 1 0 0 0 0 2.05x10-2 0.7152** 

2 3 2 4 0 1 0 0 0 8.19x10-2** 0.6345 

3 3 2 4 0 0 1 0 0 1.15x10-2 0.2978 

4 3 2 4 0 0 0 1 0 5.1x10-3 0.5390 

1 
 

5 3 2 4 0 0 0 0 1 2.05x10-2 0.5063 

           

1 3 2 3 0 2 0 0 0 8.19x10-2** 0.3591 

2 3 2 3 1 1 0 0 0 5.1x10-3 0.4120* 

3 3 2 3 0 1 1 0 0 5.14x10-2 0.3314 

4 3 2 3 0 1 0 1 0 1.15x10-2 0.2952 

2 

5 3 2 3 0 1 0 0 1 5.1x10-3 0.2717 

1 3 2 2 0 3 0 0 0 2.05x10-2* 0.1215 

2 3 2 2 1 2 0 0 0 5.1x10-3 0.2116* 

3 3 2 2 0 2 1 0 0 8.0x10-3 0.1488 

4 3 2 2 0 2 0 1 0 2.05x10-2* 0.1292 

5 

3 

5 3 2 2 0 2 0 0 1 2.05x10-2* 0.1215 
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4.3. Numerical Illustration on the Breaking of Ties Existing in D-optimal Design 
 A tie is said to exist in D-optimal design when two or more designs of with the same number 
of support points N have equal maximum determinant of the information matrices resulting in more 
than one D-optimal designs. In this section, we consider the case of using the DL-optimality 
criterion to break the ties existing in D-optimal designs. 
Given a bivariate quadratic surface 
 f(x1,x2) = a00 + a10x1 + a20x2 + a12x1x2 + a11x1

2 + a22x2
2 + e 

defined in X
~

 = {x1, x2; x1 = -1, 0, 1 and x2 = -2, -1, 1, 2} 
to obtain a 7-point design, using the class 4 1 2 0 and 4 0 2 1 we have, 
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7 7
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Det M(ξ7
1) = Det M(ξ7

2) = 1.0184 

Det L(ξ7
1) = 68.2001 and Det L(ξ7

1) = 48.1160 respectively. 
and also for  
 f(x1,x2) = a00 + a10x1 + a20x2 + a12x1x2 + a11x1

2 + a22x2
2 + e 

defined in an irregular experimental area used section 4.2 to obtain a 6-point design; using the 
class 3 0 2 0 1 0 and 3 0 2 0 0 1 respectively.   
We have  
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11
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6
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6 ξξ
 

Det M(ξ6
1) = Det M(ξ6

1) = 3.1x10-3 while  

Det L(ξ6
1) = 0.1009 and Det L(ξ6

2) = 0.0939 respectively. 
 
CONCLUSION  
     

In this work the D-optimality criterion (which has to do with the maximum determinant of the 

information matrix) was reviewed and a new optimality criterion known as the LD -optimality 

criterion; which has to do with the maximum determinant of the loss of information matrix, was 
introduce. 
       The numerical demonstrations of this work are carried out in two  experimental region that is 

the regular geometric experimental region 1 2 1 2{ , ; 1,0,1 and 2, 1,1,2}X x x x x= = − = − −%  and the irregular 

geometric experimental region (using a grid of 21 points); for a bivariate linear response function; 
where the support point for any N-point design is arranged in one homogeneous block or more 
than one homogeneous blocks. From the numerical illustration, it has been shown that there exists 

a correspondence between the D- and LD - optimality criteria for only a bivariate linear response 

function in a regular experimental region with or without blocking. For the bivariate linear response  



function in an irregular experimental region with or without blocking it is not always true. That is, a 

correspondence does not always exist between the D- and LD - optimality criteria. We note that 

the determinant of the loss of information matrix of a design is never zero even if the determinant 
of the information matrix of such design is equal to zero, unless for the case where all the support 
points of one of the factors under consideration is zero all through. 

Finally, whenever a tie exists in a D-optimal design, we can use the DL-optimal design to 
break it. 
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