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ABSTRACT 

 
 We propose an implicit multi-step method for the solution of initial value problems (IVPs) of 
third order ordinary differential equations (ODE) which does not require reducing the ODE to first 
order before solving. The development of the method is based on collocation of the differential 
system and interpolation of the approximate solution at selected grid points. This generates a 
system of equations, which are then solved using Gaussian elimination method. Three predictors, 
each of order 5, are also proposed to calculate some starting values in the main method. Analysis 
of basic properties is considered to guarantee the accuracy of the method. The results for method 
of step length k = 5 when compared with that of step length k = 4 show a better level of accuracy. 
 
KEYWORD: Zero stable, third order IVPs, predictor method, step length. 
 
INTRODUCTION 
 
 We want to consider the solution of the third order IVPs of the form. 

( ) ( ) ( ) ( ) )1.1(,,,,,,,,, 210 −−−−−==== Rfyaayayayyyyxfy lllllllll εηηη  

without reducing the problem into a system of first order IVPs . Problems of the form (1.1) are 
important for their application in Science and Engineering, especially in Biological Sciences and 
Control Theory Awoyemi (1996). Some solutions of IVPs of the form (1.1) exists. Awoyemi (1996) 
considered a two-step method for IVPs of order two. In his contribution Awoyemi (2003) applied 
the concept of P-stable method to IVPs of order three. Udo et al (2007) opined that using 
truncation error a linear multistep method can be derived for a second order IVP. 
            According to Awoyemi (1999, 2001), reducing to first order is inefficient due to 
computational burden and also uneconomical arising from computer time wastage.  Bun and Vasil’ 
Yer (1992) opined that with the reduction approach, we cannot solve equation explicitly with 
respect to the derivative of the highest order. 

In consideration of these setbacks, we consider a method that can solve (1.1) without 
reduction. Eminent scholars have made efforts to solve higher order IVPs especially the special 
second order differential equations by a number of different methods. Lambert (1973), Enright  
(1974), Twizell and Khaliq (1984) independently considered the technique of multiderivative 
methods of solving second order IVPs. They agreed on the fact that multiderivative methods give 
high accuracy and possess good stability properties when used to solve first order IVPs. However, 
Awoyemi (1999, 2001) introduced the concept of multiderivative collocation approach for solving 
directly higher order IVPs. Awoyemi (2003) developed a P-stable method for step length k = 3 for 
solving third order IVPs. Awoyemi et al (2006) considered a non-symmetric method for a step 
length of k = 4, also a multiderivative method for third order IVPs. Thus, in this article, we consider 
a step length of k = 5 for third order IVPs instead of k = 4 to investigate if such an extension will 
improve the existing result. 
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THE METHOD 
 We define an operator L as in Awoyemi (1999) by  
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where k = 5  will represent the step length of the  method. 
From this definition, we can  rewrite equation (1.1) in the form 
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Also let 

 ( ) 0, ≥=Ψ jxxD j
    --------------------------------------------------(2.3) 

be a canonical polynomial of degree j,  Awoyemi (1999 ),which leads to a recurrence relation 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ){ } ( ) )4.2(10,1...21....1 21 −−=Ψ+−−−++Ψ−+Ψ−=Ψ −−− mjxmjjjjxjjxjxx mjjj

j

j
Clearly, 

( )xjΨ  is a polynomial of degree m and it is the basis function of the proposed method. 

           Thus, in this work, an approximate solution of the form 
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is proposed. The third derivative of  (2.5) is 
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where ( ) 1213, −= kja j
are some of the parameters to be determined. Thus the differential system 

for our method is 
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          Collocating equation (2.7) at ( )kjxx jn 10, == +  and interpolating equation (2.5) at 

( ) 112, −== + kjxx jn  yields the following system of equations 
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            Solving equations (2.8),(2.9) for ‘ ’ values and substituting into equation (2.5) gives a 
scheme of the form 
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where )()( xandx βα  are real coefficients of  jnjn fandy ++  respectively. 

Noting that ( )jn
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jnjnjn yyyxff +++++ = ,,,  ,the continuous scheme of the method is given as 
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Equation (2.11) produces the coefficients of ( )xjα  and ( )xjβ  in equation (2.10) if 
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where h = xn+j – xn+j-1  Awoyemi ( 1999) 
Evaluating the coefficients for t = 1 yields 
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which is our new method with a difference scheme of order 5.  A Taylor series expansion of (2.13) 
is taken as in Udo et al (2007) and like terms in powers of h are collected to give 
 
 

                    -----------------------------(2.14)   
According to definition 1 of Udo et al (2007) 
 

 
 
 

where Ci, i = 0(1)p+1, represents the sum of the coefficients of the like terms, p the order of our 
method and Cp+1 is the first non zero term in our method .  

            The first and second characteristic polynomials of (2.13) are  
 

 respectively. We 
have that 
 

 Applying definition 2 of Udo et al (2007) we 
see that (2.13) is consistent. 
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What this means according to Fatunla (1988), is that (2.13) is a convergent method.  According to 
Lambert (1973) and Fatunla (1988), the region of absolute stability can be established using  
 

                            J. J(2.16)        

Substituting r = eiθ  = cos + isin  into (2.16) gives  
 

 
Rationalizing and simplifying (2.17) yields a system of the form 

        ..                                                                               JJJ(2.18) 
According to Fatunla (1988) and Awoyemi et al (2006), we ignore the imaginary part and evaluate 

 for 0  to obtain [ ]20.4 0.3,  as the region of stability of (2.13). 

 
Equation (1.1) suggests that we will need the first and second derivatives of (2.13), which are given as 
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We present below a summary of the properties of method (2.13) and those of its first and second 
derivatives. The analysis of the properties of methods (2.19) and (2.20) has been confirmed and 
are omitted here because of space. It follows the same process as that of (2.13). 

 

 
 Table 2.1: Summary of properties of method (2.13) 

Method Order C6 Consistency Zero stability Convergent 

Main method (2.13) 5 0.0042 Yes Yes Yes 

First derivative (2.19) 5 -0.0076 Yes Yes Yes 

Second derivative 
(2.20) 

5 0.0083 Yes Yes Yes 

 
3. THE PREDICTOR 
 In developing the predictor, we employ the same collocation procedure adopted for the 
main method (2.13) which yields the method of the form (2.10). Again putting 

( ) )10.2(,/5 4 inhxxtandk n+−== the coefficients ( ) ( )xandx jj

∗∗ βα can be determined. 

Evaluating these coefficients at t = 1 gives our predictor for  as  
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The first and second derivations of (3.1) are 
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             The predictors for yn+4 and yn+3, their respective first and second derivatives which are 
similarly derived are here listed 

as

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )

presentedasissummaryaandanalyzedaresderivativetheirandpredictorsAll

techniquederivativepartialbyfandffindand

yyyxff

formtheinputweeFurthermor

iyyyxffyyyxffwhere

cif
ih

f
ih

fihxyy

bf
ih

f
ih

f
ih

xyihxyy

af
ih

f
ih

xy
ih

xihyxyhixyy

ThusAwoyemiseeandinxxatsderivativeond

andfirsttheirandyyofvaluesthecalculatetoansionseriesTayloruseweFinally

AwoyemiinderivedthosetoidenticalaretoinresultsthethatnotetostrikingisIt

destablishewasapproachsamethegU

fff
h

yyy
h

y

having

ff
h

yyyy

while

ffff
h

yyy
h

y

and

ffff
h

yyy
h

y

having

ff
h

yyyy

IIi

IIl

ll

n

l

nnn

ii

n

ll

n

l

nnnn

lll

nnn

IIII

in

ll

n

l

nnn

II

nin

nnn

ii

nnnin

n

nn

n

nnnnnn

l

n

nnnnnn

nnnnnnn

ll

n

nnnnnnnn

nnnnnn

y

.

,,,

)1.2(,

2,1,,,,,,,,

)9.3(2,1.............
!3!2

)9.3(.......................
!4!3!2

)9.3(.................
!4!3!2

).2003()17.2()16.2(),13.2(sec

,exp,

.)2003()8.3()1.3(

.sin

)8.3(.............................18124298
240

385
2

1

)7.3(...........................................................
2

33

)6.3(............248_10141224189
720

2
1

)5.3(................48198228894
720

385
2

1

)4.3.....(..........
2

33

32

432

11

1
432

1

12

''

3

12

2

123

12

3

123

12312324

123

2

423

1

4

23

3

124

=

===

−−−−−−−−=++++=

−−−−−−−+++++=

−−−−−−−+++++=+=

=

++++−=

+=−+−

+−++−=

−++++−=

+=−+−

+

+

+

++

+

+++++

+++++

+++++++

+++++++

+++++

 

   
Table 3.1 Summary of properties of predictors 

Method Order C6 

3.1 5 0.0042 

3.2 5 0.0083 

3.3 5 0.0083 

3.4 5 0.157 

3.5 5 -0 .796 

3.6 5 -0.328 

3.7 5 -0.329  
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Methods (3.1),(3.2),(3.3),(3.4),(3.5),(3.6) and (3.7) all methods were all found to be zero stable 
and consistent.  
 
4. NUMERICAL EXPERIMENT 
 

           Three numerical examples on third order IVPs are considered to test the accuracy of the 
derived method.  
4.1 TEST PROBLEMS 
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             The last problem is known as Blasius equation and has no analytical solution, Awoyemi et 
al (2006).The existence of solution is guaranteed by a theorem in Lambert (1973). 
  
4.2 NUMERICAL SOLUTION TO TEST PROBLEMS 
              Here we present a manual framework for the solution of problem 1 using (2.13).A full 
manual solution is not only lengthy but tedious. The following starting values 

,are needed for the 
evaluation of (2.13). The first three are our given initial conditions in (4.1a).The rest are gotten by 
taking a Taylor series of their respective expansions as in equations (3.1) to (3.9c).Setting n = 0 in 
(2.13) gives    

               JJJJJJJ(4.2) 

where  
Schemes similar to that of (4.2) can be generated by setting n = 1, 2, 3, . in (2.13).Consequently 
an iterative process with h = 0.1 can be carried out. 
             The results of the above solved problems using a computer program are here presented. 
Tables 5.1, 5.2 and 5.3 displays the exact results (YEX), calculated results (YC) and the errors 
(ER) arising from their difference. We considered the solution at h equals 0.1, 0.05 and 0.025. 
 
  Table 5.1: Problem 1 for h = 0.1 

X YEX YC ER 

0.20 0.1980106362  D – 01 0.1980070242 D – 01 0.3612062437 D – 06 

0.40 0.768674920    D – 01 0.7686353006 D – 01 0.3961941555 D – 05 

0.06 0.1645579210  D – 00 0.1645442666 D + 00 0.1365446766 D – 04 

0.80 0.2729749104  D + 00 0.272445367   D + 00 0.3037377736 D – 04 

1.00 0.3905275319  D + 00 0.3904749427 D + 00 0.5258915799 D – 04 
 
  Table 5.2: Problem 2 for h = 0.1 

X YEX YC ER 

0.20 0.2385361751  D +00 0.238531178   D + 00 0.5730263181 D – 07 

0.40 0.5472963543  D+ 00 0.547295972   D + 00 0.6571494273 D – 06 

0.06 0.9139712436  D + 00 0.9139689071 D + 00 0.2334493845 D – 05 

0.80 0.1323942672  D + 01 0.1323937192 D + 00 0.5479875340 D – 05 

1.00 0.1760866373  D + 01 0.1760856072 D + 01 0.1031080846 D – 04 
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 Table 5.3: Problem 3 for h = 0.1 

X YEX YC ER 

0.20 -0.3933917555 D +01 -0.3933520523 D + 01 0.37970321956 D – 03 

0.40 -0.7030904881 D + 01 -0.7029714371 D + 01 0.1190510675   D – 02 

0.06 -0.1243810072 D + 02 -0.1243444223 D + 02 0.3656483288   D – 02 

0.80 -0.2220445624 D + 02 -0.221944610    D + 02 0.10001014363 D – 01 

1.00 -0.4003573856 D + 02 - 0.4001086367 D + 02 0.2487489491   D – 01 

 
 Table 5.4 Problem 1 for h = 0.1, 0.05, 0.025 and 0.0125 

X H=0.1 ERROR 0.05 ERROR 0.025 ERROR 0.0125 ERROR 

0.20 0.3612062437D-06 0.6401835712D-07 0.9128686838D.08 0.1211163090D-08 

0.40 0.3961941555D-05 0.5609937763D-06 0.7414099987D-07 0.9516846713D-08 

0.60 0.1365446766D-04 0.1627079533D-05 0.2356580064D-06 0.2990465800D-07 

0.80 0.3037377736D-04 0.3947597266D-05 0.5023483853D-06 0.6333284569D-07 

1.00 0.5258915799D-04 0.6698377190D-05 0.8441629226D-06 0.1059195132D-06 
 

 Table 5.5 Problem 2 for h = 0.1, 0.05, 0.025 and 0.0125 

X H=0.1 ERROR 0.05 ERROR  0.025 ERROR 0.0125 ERROR 

0.20 0.8850700747D.07 0.1134372979D-07 0.1527019677D-08 0.2001054600d-09 

0.40 0.6921191573D-06 0.9425472591D-07 0.1235577907D-07 0.1582804221D-08 

0.60 0.2371834769D-05 0.3146139697D-06 0.4053142377D-07 0.5143681370D-08 

0.80 0.5518098773D-05 0.7186047399D-06 0.9166154213D-07 0.1157331031D-07 

1.00 0.1033839056D-04 0.1529238701D-05 0.1684398196D-06 0.2119696663D-07 

 
 Table 5.6: Comparison with Awoyemi et al (2006) for K = 4 using problem 2 for h = 0.1 

X YC for K = 4  
(Awoyemi et al 2006) 

YC for K= 5 (new 
method) 

YEX 

0.20 0.1980061481   D – 01 0.2385361178    D + 00 0.2385361751  D +00 

0.40 0.7686342432   D – 01 0.547295972      D + 00 0.5472963543  D+ 00 

0.60 0.1645441594   D + 00 0.9139689071    D+ 00 0.9139712436  D + 00 

0.80 0.2729444450   D + 00 0.1323937192    D + 00 0.1323942672  D + 01 

1.00 0.39047488110 D + 00 0.1760856072    D + 01 0.1760866373  D + 01 
 
6. CONCLUSION 
 

 An implicit zero stable method for the solution of third order IVPs is developed. The order of 
the main method and those of its predictors are found to be the same a case highly recommended 
by Fatunla (1988). The accuracy of this method is encouraging judging from the small error 
values. Three different test problems were considered for the different sizes of h. It was found that 
as h decreases, the method recorded improved accuracy (tables 5.4 and 5.5). 
 In Awoyemi et al (2006), the same set of problems were considered. The performance of 
the step length k = 5 method over that of step length k = 4 was evidently displayed in table 5.6, as 
results from both methods are compared with the exact value. However, in terms of computer time 
the k = 4 method has a slight advantage over that of k = 5 because of the number of variables per 
iteration. Hence, the choice of which method to adopt depends on accuracy and time. 
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